вторник, 27 июля 2010 г.

МЕРА БЕСКОНЕЧНОСТИ: ЧТО ОБОЗНАЧАЕТ ТЕРМИН "ГРОСС-ЕДИНИЦА"

Владимир ХОРТ кандидат физико-математических наук


На главную страницу






Темы дня:
• Куда укатил Фаэтон? Астрономы приблизились к отгадке тайны исчезнувшей планеты
• Астроном-любитель поразил ученых: небо лучше видно из сарая
• Мировая утопия
• "Хаббл" сфотографировал "безголовую" комету
• Испанские ученые нашли простой способ сохранения ясного ума
• Итальянский физик выяснил, куда "течет" время
• Город без имени: Теотиуакан остается главной загадкой для историков Древней Америки



begun Дать объявление

Новости на GZT.RU:
Все главные новости дня, обзор происшествий, мнения экспертов.
www.­gzt.­ru

Все объявления

Считается, что на ранних ступенях развития человечество считать не умело. Скорее всего, люди различали один, два, возможно даже три объекта, но большие количества они объединяли понятием «много». В наши дни на берегах Амазонки живёт племя пираха, которое, по мнению исследователя из университета Колумбия (США) Питера Гордона, ухитряется обходиться системой счисления, в которую входят один — «ой» (hói), два — «ои» (hoí) и много — «аибааги» (aibaagi). В этой нехитрой математике, если к одному прибавить один, получится «ои» — два. А вот если к двум прибавить один или два, получится одинаковый результат: «аибааги» — много.

Несмотря на отсталость такой «первобытной» математики, цивилизованным людям тоже приходится иметь дело с эквивалентом «аибааги». В какой-то степени туземное «много» сродни нашей бесконечности. Как вы думаете, сильно ли отличаются две величины: ∞ и ∞+1? C точки зрения обычного человека, первая величина на единицу меньше второй. Но для математиков эти две величины одинаковы. Представьте себе, рассуждают они, гостиницу с бесконечным количеством номеров, где в каждом номере живёт постоялец (для такого отеля придумали даже термин «Гранд-отель Гильберта»). Как найти место для ещё одного гостя? Очень просто, нужно поселить его в первый номер, а проживающего там клиента попросить переехать во второй номер, второго — в третий и так далее. В гостинице новых номеров не прибавилось, но место для приезжего нашлось, а значит, ∞ = ∞+1.

Всё же не все бесконечные множества оказались одинаковыми, и для их измерения ввели понятие мощности. Скажем, минимально возможным из всех бесконечных множеств, «счётным», принято считать мощность множества натуральных чисел (положительных и целых). А вот множество действительных чисел (рациональных, которые можно выразить в виде правильной дроби, и иррациональных, которые в таком виде не выражаются), хотя и бесконечное, но уже больше «счётного», и его мощность обозначают как «континуум». Таким способом математики измеряют бесконечные множества почти полтора века, хотя точность подобной методики напоминает в некоторой мере математику туземцев пираха.

На практике люди бесконечностью считают то, что трудно поддаётся счёту, — помните, у Ломоносова: «Открылась бездна звезд полна, звездам числа нет, бездне — дна». Астрономы давно подсчитали число видимых невооружённым глазом звёзд и даже занесли их в справочники, но для обывателя звёзд на небе по-прежнему «аибааги» — много. Если же вдруг в небе появится новая звезда, их число увеличится на одну. Но всё равно их останется «аибааги».

Доктор физико-математических наук Ярослав Сергеев, профессор Нижегородского государственного университета им. Н. И. Лобачевского, предложил ввести для измерения бесконечных множеств другую меру. Он обозначил количество всех натуральных чисел 1, 2, 3 и т.д. специальным термином — «гросс-единицей» (от английского gross one — крупная единица) и ввёл для него специальный символ — . Отличается «гросс-единица» от такой меры, как мощность, тем, что позволяет точнее различать бесконечные множества. Мощность множества натуральных чисел (1, 2, 3 и т.д.) и натуральных чисел больше единицы (2, 3, 4 и т.д.) одинаковая — счётная. А с позиций «гросс-единицы» второе множество измеряется величиной – 1. И оно содержит на единицу меньше элементов, чем первое.

С «гросс-единицей» можно выполнять все арифметические действия: складывать, вычитать, умножать и делить на целые числа, для неё действуют привычные арифметические правила:

+ a = a + ;

+ = 2 x ;

0 x = x = ;

- = 0;

: = 1;

0 = 1;

1 = 1.

Для нового числа действует правило: часть всегда меньше целого: < + 1

Удивительно, но при подобном подходе к измерению бесконечных величин не удаётся найти противоречий. По крайней мере, вот уже несколько лет новое число благополучно сосуществует с традиционной бесконечностью ∞. Более того, с помощью «гросс-единицы» можно измерять и другие, прежде бесконечные величины. Например, количество чётных чисел будем обозначать как /2. Тогда количество всех нечётных чисел составит - /2 = /2

Впрочем, с чего это мы решили, что количество чётных и нечётных чисел одинаково? Если хотите, можете считать, что чётных чисел на одно больше. Тогда, обозначив X количество нечётных чисел, получаем, что X+1 — количество чётных чисел, а их общее количество как раз «гросс-единица»:
X+(X+1)=

Решая это несложное уравнение привычными методами, получаем, что ( - 1) : 2 — количество нечётных чисел, а ( + 1): 2 — чётных.

И опять не удаётся найти (по крайней мере, вот уже несколько лет) никакого противоречия при подобном подходе. Если и впредь не удастся доказать, что количество чётных чисел совпадает с количеством нечётных чисел, придётся подобное утверждение принимать как аксиому.

«Гросс-единица» позволяет навести порядок в бесконечных величинах, для измерения которых прежде использовали понятие «мощности множества». Скорее всего, бюджет государства, способного выстроить «Гранд-отель Гильберта», тоже бесконечен. Как удобно было бы управляться с ним, даже если бы он был минимально возможным — «счётным» бюджетом. Выделяй 90% средств на социальные нужды, всё равно на другие бюджетные статьи останется «счётное» количество денег. С помощью «гросс-единицы» можно вести «бухгалтерский учёт» даже при бесконечном бюджете, размер которого иному туземцу покажется «аибааги».

Пользоваться «гросс-единицей» уже научили компьютер: создана первая программа-калькулятор, которая выполняет арифметические действия как с конечными числами, так и с «гросс-единицей». Использование открывает возможности оперировать на компьютере не только с бесконечно большими, но и с бесконечно малыми величинами.

Работа с «гросс-единицей» не сильно отличается от обычных алгебраических преобразований. Например, легко упростить выражение:
( - 1) x ( + 1) = 2 - 1.

По смыслу это значит примерно следующее: «гросс-единица» сопоставима с количеством натуральных чисел, а 2-1 — это почти «гросс-единица» в квадрате. Ну если быть совсем точным, то на единицу поменьше. Это значительно больше, чем просто .

Точно так же можно измерять и малые величины, например 1/1/.

Подобный подход позволяет упростить расчёты в теории пределов. Легко посчитать, к чему стремится выражение :


при x, стремящемся к ∞. Достаточно вместо x подставить «гросс-единицу» и выполнить с ней обычные алгебраические преобразования:


= 1 + ( - 1) / ( + 1) = 2-2/( + 1).

Сразу видно, что результат незначительно отличается от 2.

Любопытные результаты можно получить, если предложить компьютеру использовать в вычислениях «гросс-единицу». Например, выяснить, чему равно


при x, близких к 0. Вычисляя значения sin (1/1/), компьютер воспользуется формулой Тейлора:

sin(1/1/)=1/1/ – 1/(6 3)+…, а значит,



Для человека результат незначительно отличается от 1, а компьютер, который научили пользоваться «гросс-единицей», сможет выделить существенную часть и бесконечно малый «остаток».

Пока трудно сказать, насколько широко будет использоваться «гросс-единица». Можно только утверждать, что новое понятие позволяет по-другому взглянуть на бесконечность, а заодно и научить компьютер обращаться с ней.

Источник: "Наука и жизнь"

Комментариев нет:

Отправить комментарий