понедельник, 29 марта 2010 г.

Seven questions that keep physicists up at night

Seven questions that keep physicists up at night
by Ivan Semeniuk - NewScientist
Thanks to SPS for the link. http://www.newscientist.com/article/dn18041-seven-questions-that-keep-physicists-up-at-night.html?full=true

It's not your average confession show: a panel of leading physicists spilling the beans about what keeps them tossing and turning in the wee hours.
That was the scene a few days ago in front of a packed auditorium at the Perimeter Institute, in Waterloo, Canada, when a panel of physicists was asked to respond to a single question: "What keeps you awake at night?"
The discussion was part of "Quantum to Cosmos", a 10-day physics extravaganza, which ends on Sunday.
While most panelists professed to sleep very soundly, here are seven key conundrums that emerged during the session, which can be viewed here.
Why this universe?
In their pursuit of nature's fundamental laws, physicists have essentially been working under a long standing paradigm: demonstrating why the universe must be as we see it. But if other laws can be thought of, why can't the universes they describe exist in some other place? "Maybe we'll find there's no other alternative to the universe we know," says Sean Carroll of Caltech. "But I suspect that's not right." Carroll finds it easy to imagine that nature allows for different kinds of universes with different laws. "So in our universe, the question becomes why these laws and not some other laws?"
What is everything made of?
It's now clear that ordinary matter – atoms, stars and galaxies – accounts for a paltry 4 per cent of the universe's total energy budget. It's the other 96 per cent that keeps University of Michigan physicist Katherine Freese engaged. Freese is excited that one part of the problem, the nature of dark matter, may be nearing resolution. She points to new data from experiments like NASA's Fermi satellite that are consistent with the notion that dark matter particles in our own galaxy are annihilating with one another at a measurable rate, which in turn could reveal their properties. But the discovery of dark energy, which appears to be speeding up the expansion of the universe, has created a vast new set of puzzles for which there are no immediate answers in sight. This includes the nature of the dark energy itself and the question of why it has a value that is so extraordinarily small, allowing for the formation of galaxies, stars and the emergence of life.
How does complexity happen?
From the unpredictable behaviour of financial markets to the rise of life from inert matter, Leo Kadananoff, physicist and applied mathematician at the University of Chicago, finds the most engaging questions deal with the rise of complex systems. Kadanoff worries that particle physicists and cosmologists are missing an important trick if they only focus on the very small and the very large. "We still don't know how ordinary window glass works and keeps it shape," says Kadanoff. "The investigation of familiar things is just as important in the search for understanding." Life itself, he says, will only be truly understood by decoding how simple constituents with simple interactions can lead to complex phenomena.
Will string theory ever be proved correct
?
Cambridge physicist David Tong is passionate about the mathematical beauty of string theory – the idea that the fundamental particles we observe are not point-like dots, but rather tiny strings. But he admits it once brought him to a philosophical crisis when he realised he might live his entire life not knowing whether it actually constitutes a description of all reality. Even experiments such as the Large Hadron Collider and the Planck satellite, while well positioned to reveal new physics, are unlikely to say anything definitive about strings. Tong finds solace in knowing that the methods of string theory can be brought to bear on less fundamental problems, such as the behaviour of quarks and exotic metals. "It is a useful theory," he says, "so I'm trying to concentrate on that."
What is the singularity?

For cosmologist and Perimeter Institute director Neil Turok, the biggest mystery is the one that started it all, the big bang. Conventional theory points back to an infinitely hot and dense state at the beginning of the universe, where the known laws of physics break down. "We don't know how to describe it," says Turok. "How can anyone claim to have a theory of everything without that?" Turok is hopeful that string theory and a related development known as the "holographic principle", which shows that a singularity in three dimensions can be translated into a mathematically more manageable entity in two dimensions (which may imply that the third dimension and gravity itself are illusory). "These tools are giving us new ways of thinking about the problem, which are deeply satisfying in a mathematical sense," he says.
What is reality really?
The material world may, at some level, lie beyond comprehension, but Anton Zeilinger, professor of physics at the University of Vienna, is profoundly hopeful that physicists have merely scratched the surface of something much bigger. Zeilinger specialises in quantum experiments that demonstrate the apparent influence of observers in the shaping of reality. "Maybe the real breakthrough will come when we start to realise the connections between reality, knowledge and our actions," he says. The concept is , but it is well established in practice. Zeilinger and others have shown that particles that are widely separated can somehow have quantum states that are linked, so that observing one affects the outcome of the other. No one has yet fathomed how the universe seems to know when it is being watched.
How far can physics take us?
Perhaps the biggest question of all is whether the process of inquiry that has revealed so much about the universe since the time of Galileo and Kepler is nearing the end of the line. "I worry whether we've come to the limits of empirical science," says Lawrence Krauss of Arizona State University. Specifically, Krauss wonders if it will require knowledge of other universes, such as those posed by Carroll, to understand why our universe is the way it is. If such knowledge is impossible to access, it may spell the end for deepening our understanding any further.
Turok says that's exactly why the Perimeter Institute exists, to harness the thinking of the world's brightest young minds in an unrestrained environment. By optimising conditions for creative thinking, it may be possible to avoid such an impasse.
"We're used to thinking of theoretical physics as accidental," says Turok. "We need to ask whether there's a more strategic way to speed up understanding and discovery."
Perhaps then all those troubled physicists can finally get some rest – or at least switch to more mundane worries.
The "Quantum to Cosmos" festival can be viewed online
If you would like to reuse any content from New Scientist, either in print or online, please contact the syndication department first for permission. New Scientist does not own rights to photos, but there are a variety of licensing options available for use of articles and graphics we own the copyright to.

вторник, 23 марта 2010 г.

Черные дыры поставили под сомнение природу темной материи

Темная материя, возможно, распределена во Вселенной иначе, чем предписывают большинство из существующих теорий. К такому заключению пришли астрономы, изучающие поглощение темной материи черными дырами. Выводы ученых опубликованы в журнале Monthly Notices of the Royal Astronomical Society. Коротко работа описана в пресс-релизе Королевского астрономического общества Великобритании.
Темной материей, или скрытой массой называют пока не обнаруженную экспериментально субстанцию, которая участвует в гравитационных взаимодействиях, но не участвует в электромагнитных. Гипотеза о существовании темной материи была предложена после того, как астрономы обнаружили, что массы известных астрономических объектов недостаточно для того, чтобы они взаимодействовали так, как это наблюдают ученые.

Авторы нового исследования строили математические модели поглощения темной материи черными дырами - объектами со столь большой массой, что они не отпускают от себя даже излучения. Большинство гипотез, описывающих свойства темной материи, предполагают, что она существует в виде плотных "комков". Согласно новым данным, если бы это предположение оказалось верным, то сверхмассивные черные дыры (массой от нескольких миллионов до миллиардов масс Солнца) в молодой Вселенной, засасывая в себя огромные количества темной материи, изменили бы облик Вселенной до неузнаваемости. Другими словами, если бы темная материя была распределена так, как считается, окружающее космическое пространство выглядело бы сейчас совершенно иначе.

Ученые определили критическое значение плотности темной материи - семь солнечных масс на каждый кубический световой год. По утверждениям авторов работы, темная материя не может быть упакована с большей плотностью даже локально.

Совсем недавно физики заявили, что им, возможно, удалось получить данные, которые можно рассматривать как доказательство существования темной материи. Однако сами авторы, анализировавшие показания детектора CoGeNT, подчеркивают, что новые результаты нуждаются в многократной тщательной проверке.


Ссылки по теме
- Supermassive black holes: hinting at the nature of dark matter? - пресс-релиз Королевского астрономического общества Великобритании, 22.03.2010
- Физики заявили о возможной регистрации легкой темной материи – Lenta.ru, 01.03.2010
- Физики объявили о вероятной регистрации частиц темной материи – Lenta.ru, 12.02.2010
- Физики показали ненужность темной материи – Lenta.ru, 29.01.2010
- Темную материю заподозрили в изменении орбиты Земли – Lenta.ru, 15.01.2010
- Темная материя оказалась скульптором галактик – Lenta.ru, 12.01.2010
- Физики почти обнаружили темную материю – Lenta.ru, 18.12.2009

Сайты по теме
- Темная материя в Википедии

вторник, 9 февраля 2010 г.

^^ ЖИЗНЬ НЕЖИВОГО С ТОЧКИ ЗРЕНИЯ СИНЕРГЕТИКИ

ЖИЗНЬ НЕЖИВОГО С ТОЧКИ ЗРЕНИЯ СИНЕРГЕТИКИ
Князева Е.Н., Курдюмов С.П.

«Вся Вселенная жива, но сила чувствительности проявляется во всем блеске только у высших животных». «Атом всегда жив и счастлив, несмотря на громадные промежутки небытия или состояния в неорганическом веществе». Вслушайтесь в слова, принадлежащие русскому ученому, «калужскому мечтателю» К.Э.Циолковскому. До недавнего времени подобного рода высказывания русских космистов об одушевленности космической материи, о семенах жизни, рассеянных по Вселенной, могли бы счесть просто наивными, несущими в себе остатки архаики, возрождающими учение гилозоизма многовековой давности. Но всегда ли нас обманывает воображение? И велико ли расстояние между полетом фантастической мысли и проницательным умозрением, с одной стороны, и действительностью – с другой?

Поиск аналогов живого в мертвом



«Эти формы, возникающие из кристаллов замерзшей воды, так близки к формам растений, что связь между теми и другими формообразованиями очевидна».

М.Пришвин, 1942.

Синергетика интересна не только своими математическими результатами, открытием удивительного мира эволюционирующих и самоорганизующихся структур, но и своими разветвленными приложениями. Можно надеяться, что синергетика способна нам помочь и в понимании перехода от неживого к живому, биологической эволюции, психики человека, социальных организаций, течения человеческой истории. Синергетика устанавливает мостики между «мертвой» и живой природой, между целеподобностью поведения природных систем и разумностью человека, между процессом рождения нового в природе, творчеством природы и креативностью человека. В определенных классах неорганических систем ведется поиск живого, элементов самодостраивания, регенерации, морфогенеза, в живом – поиск свойств неживого, того, что обще ему с царством неорганической природы, что уже преформировано в неживом, преддано в законах эволюции Вселенной. Речь идет не просто о внешнем сходстве или метафорическом сравнении структурообразований мертвой и живой природы, яркие формы выражения которого доступны перу писателя. Речь даже не об аналогии, а об изоморфизме живого и неживого, об общности образцов эволюции и эволюционных структурообразований, о выявлении неких универсальных закономерностей эволюции и самоорганизации мира. С помощью синергетики осуществляется выход на наиболее абстрактный и глубокий уровень сравнения, вырабатываются некие общие модели, устанавливаются закономерности трансдисциплинарного типа. В Институте прикладной математики им. М.В.Келдыша РАН и на факультете ВМК МГУ в течение последних десятилетий проводятся исследования процессов эволюции в открытых и нелинейных средах и, прежде всего, процессов в среде плазмы, связанных с управляемым термоядерным синтезом. Простые, но глубоко содержательные математические модели и вычислительный (на компьютерах) эксперимент позволяют проникнуть во внутреннее существо нелинейных процессов, определяемых борьбой двух противоположных начал – диссипативного начала, рассеивающего неоднородности в среде, и начала, создающего разного рода неоднородности, действия объемных источников и стоков (что характерно для открытых диссипативных сред, систем, живых организмов). По сути дела, строится своеобразный параллельный мир, мир математических моделей. При изучении этого мира обнаруживаются парадоксальные свойства нелинейных процессов, а именно: локализация процессов в открытых диссипативных средах (образование самоподдерживающихся структур в сплошных средах), спектры структур-аттракторов как наиболее устойчивые образования, к которым эволюционируют процессы в такого рода средах, способы резонансного возбуждения структур-аттракторов, различные типы сверхбыстрого развития процессов, так называемые режимы с обострением. Далее осуществляется попытка как бы «примерить» этот, в определенной мере искусственный, мир математических моделей к реальному миру, «опрокинуть» его на реальный мир, идентифицировать открываемые свойства нелинейных процессов с известными, но порой труднообъяснимыми свойствами окружающего нас природного мира. И в ряде случаев наблюдаются совпадения, открываются возможности для перетолкования тех явлений организации и эволюции, которые стали нам привычными. Предлагаемые модельные представления, разумеется, не претендуют на то, чтобы заменить существующие физические и химические модели, в том числе сложившиеся квантово-механические представления. Но сама возможность по-другому взглянуть на реальность, на как будто бы уже на века утвердившиеся представления об атомах, Вселенной, физических, химических и биологических структурах, не может быть оставлена без внимания. На относительно простых математических моделях делаются попытки понять принципы эволюции и самоорганизации сложного. В отличие от констатации принципиальных различий между живой и неживой природой синергетика позволяет увидеть те общие принципы, которые соединяют то и другое [1] . Развитие синергетического взгляда на мир приводит к постановке целой серии неожиданных вопросов. Остаются ли атомы неизменными, раз и навсегда данными, или же в процессе эволюции Вселенной они тоже эволюционируют? Имеет ли неживое память, иначе говоря, влияют ли на протекающие сегодня в сложной структуре процессы ее «предыстория»? Является ли природа индиферентной, безразличной к возникающим в ней структурам? Имеет ли она внутренние предрасположенности к определенного рода формам? Какие пути эволюции «выбирает» природа, какие формы организации «выживают» на «теле природы»? Почему природа так экономна: почему она идет кратчайшим путем? Каким образом природе удается найти наиболее устойчивые формы? Как природа научилась ускорять эволюцию?


Что «предпочитает» природа? Спектры эволюционных форм



«Похоже, что природе доставляет удовольствие варьировать один и тот же механизм бесконечно различными способами».

Д.Дидро

Принято думать, что природа бесконечно разнообразна, что она ничем не ограничена в варьировании своих эволюционных механизмов и форм организации. Но синергетика демонстрирует обманчивость такого взгляда. Прежде всего, появляется парадоксальное представление о том, что в открытой (с источниками и стоками энергии) среде, в среде с диссипацией энергии могут возникать и устойчиво самоподдерживаться локализованные процессы – диссипативные структуры. В сплошной среде может возникать локализация, т.е. очаги более интенсивных процессов, например структуры горения (под структурой понимается здесь локализованный в среде процесс). Кроме того, не какие угодно, отнюдь не произвольные структуры могут реализоваться в данной среде. Для определенных классов открытых нелинейных сред (систем) установлено, что в нелинейных свойствах этих сред потенциально заключены спектры структур (спектры эволюционных форм организации), которые могут возникнуть в них на развитых, асимптотических стадиях процессов. Это – одна из фундаментальных задач, которая называется в синергетике «задачей о поиске собственных функций нелинейной среды», т.е. устойчивых способов организации процессов в среде, которые ей адекватны и к которым эволюционируют со временем все другие состояния среды. Сколько и какие относительно устойчивые структуры могут самоподдерживаться в качестве метастабильно устойчивых в данной природной среде (системе) – это определяется сугубо внутренними свойствами данной среды. Поиск спектров эволюционных форм природы – это, по существу, сверхзадача, близкая к задаче Гейзенберга в ядерной физике, когда требуется написать нелинейные уравнения некой среды, которая как самоорганизующаяся давала бы устойчивые состояния в виде спектра элементарных частиц. До сих пор, например, непонятно, почему количество химических элементов (типов атомов) ограничено. Почему атомов порядка сотни, а не, скажем, существенно больше или меньше? Почему существует дискретный набор зарядов ядер атомов, спектр типов атомов? Почему заряды целочисленны? Эти вопросы затрагивают глубинную физическую, квантово-механическую основу описания химических свойств и реакций. Есть основания поставить задачу получения спектра атомов как самообразований, структур самоорганизации некой открытой нелинейной среды (спектра форм, спектра масс, спектра зарядов). Уже показано, в частности, что существует глубокая аналогия между собственными функциями горения нелинейной среды на квазистационарной стадии и собственными функциями стационарной задачи Шрёдингера в центральном поле сил с кулоновским потенциалом [2] . В названной работе осуществлен вывод линейного стационарного уравнения Шрёдингера с кулоновским потенциалом из более общего квазилинейного уравнения теплопроводности с нелинейным источником. Получено уравнение Шрёдингера, а, кроме того, условие нормировки и условие непрерывности функции. За этим результатом стоит целая серия естественных следствий, и, прежде всего, попытка построить модель атома как структуры горения некой среды и предложить другое понимание причин квантования, связанное с особой устойчивостью инвариантно-групповых решений как аттракторов-целей развития. Конечное количество собственных функций квазилинейного уравнения теплопроводности с источником является математическим аналогом конечного числа собственных структур нелинейной среды, исходя из данной аналогии – ограниченного количества типов атомов, химических элементов. При таком подходе квантование должно стать следствием решения классической, но нелинейной задачи. Весь спектр атомов, как он представлен в периодической системе Д.И.Менделеева, должен быть получен как спектр собственных функций среды, определяемой соответствующими нелинейными дифференциальными уравнениями. Аналогичный подход, вероятно, имеет смысл и в области астрофизики. Быть может, все известные нам астрофизические объекты (звезды, галактики, скопления и сверхскопления галактик) составляют часть спектра эволюционных форм наблюдаемой Вселенной? Возникает надежда, что посредством математического моделирования можно выявить эволюционную ось, пронизывающую наблюдаемое разнообразие космических образований, построить эволюционное древо, объясняющее это разнообразие. Дискретность возможных структур организации – это то общее, что связывает мир живого и неживого, хотя это, возможно, и не очевидно. Системы живого открыты и в высокой степени нелинейны, поэтому их ответ на внешнее воздействие может быть многократно сильнее (или слабее) величины этого внешнего воздействия и вообще качественно различным в разных ситуациях. Нелинейность накладывает определенные ограничения на типы структур живого. Не все, что угодно, возможно в качестве метастабильно устойчивого в нелинейном мире. Нелинейность квантует, делает дискретными возможные наборы движений, поз, жестов живых существ [3]. «Архитектура» живого связана прежде всего с движением и развитием живого. Она есть гармоничное сочетание, расположение частей в метастабильное эволюционное целое. Хотя есть много типов структур и конфигураций, «архитектура» живого отнюдь не произвольна. Известны, например, базисные виды поступательных движений лошади – аллюры: шаг, галоп, рысь, иноходь. Лошадь идет не как угодно, она «использует» всякий раз один из своих базисных типов передвижений. В каждом типе передвижения движение членов лошади согласованы определенным образом, и переход от одного типа движения к другому осуществляется скачком. В этой связи представляются интересными результаты исследования структур воды, проведенные доктором Н.А.Бульенковым. Он утверждает, что структура воды является основой для эволюции и конфигурационного строения сложных структур природы, в том числе и биологических [4]. В работе Н.А.Бульенкова как бы переоткрывается идея древних о воде как первооснове мира. Во-первых, всё, даже наиболее сложные структуры живого, строятся на некой общей основе. Существует особый «архитектурный каркас», некий универсальный «кирпич» для всех параметрических структур воды. Во-вторых, этот универсальный «кирпич» затем достраивается, входит в более сложные конгломераты конечным числом способов, по нескольким определенным алгоритмам. В-третьих, сложные структуры имеют фрактальное строение, универсальные «кирпичи» и блоки повторяются в различных масштабах. Итак, природа имеет внутренние предпочтения к определенным формам живого и неживого. Только определенные наборы форм осуществимы в природных средах. А на другие формы наложен эволюционный запрет. Они неустойчивы и очень быстро эволюционируют к устойчивым формам организации, «сваливаются» на них.

Структуры-аттракторы как непроявленное

«Природа любит скрываться»

Гераклит

Относительно устойчивые структуры, на которые неизбежно выходят процессы эволюции в открытых и нелинейных средах (системах), называются аттракторами. Поскольку под аттракторами здесь понимаются реальные структуры в открытых и нелинейных средах, а не их изображения в фазовом пространстве, постольку употребляется целостное словосочетание «структуры-аттракторы». Простейшие математические модели нелинейных открытых сред свидетельствуют, что открытая нелинейная среда (система) таит в себе определенные формы организации. Структуры-аттракторы предданы, потенциально заложены в среде (системе), определяются сугубо ее собственными нелинейными свойствами. Они есть непроявленное, «дух становления» системы. Они определяют тенденции процессов в ней. Результаты синергетики как бы возвращают нас к идеям древних о потенциальном и непроявленном. В частности, они близки к представлениям Платона о неких первообразцах и совершенных формах в мире идей, уподобиться которым стремятся вещи видимого, всегда несовершенного мира. Или же к представлениям Аристотеля об энтелехии, о некой внутренней энергии, заложенной в материи, вынуждающей ее к обретению определенной формы. По мысли Аристотеля, создаются только вещи в определенных формах, но не сами формы, которые, будучи активным началом, пред-даны, пред-существуют. Нельзя не вспомнить здесь также восточный образ Небытия, представленный, к примеру, в «Ицзин» - китайской «Книге перемен». Небытие – это непроявленное. Это – непреходящая, всерождающая и всепоглощающая основа вещей. Это – пустота, одновременно и лишенная формы, и таящая в себе всё [5]. Вещи скрываются от самих себя, говорит Гадамер. Эта потаенность, потенциальность как оборотная сторона бытия присуща и миру человеческому, и миру неживой природы. И в среде плазмы, и в живом веществе, и на поле человеческого сознания, и в теле культуры или в среде научного сообщества есть свои внутренние тенденции, стремления, или «предпочтения». И лишено смысла им противиться. Все равно они, подобно сильному речному течению, заставят двигаться в нужном направлении: в поле притяжения одного образца-аттрактора – к нему, а в поле притяжения другого образца-аттрактора – к другому. В этом смысле идеи Платона, Аристотеля и мудрецов древнего Китая звучат совершенно конструктивно. Сплошная открытая и нелинейная среда наряду с несовершенными проявленными формами содержит потенциальное бытие, идеальные структуры. Она «наполнена» потенциальными, еще не реализовавшимися формами, структурами-аттракторами. Каждая из этих структур соответствует собственной тенденции среды, имеет потенциал реализоваться. На упрощенных математических моделях можно видеть все поле возможных путей эволюции, все возможные пути Дао данной среды. С выбором пути эволюции, с выходом на одну из структур-аттракторов среды, все другие эволюционные пути как бы закрываются. А поскольку в ходе эволюции может изменяться сама среда, ее внутренние свойства, то может трансформироваться, несколько перестраиваться все поле возможных путей эволюции. Поэтому некоторые структуры-аттракторы, некоторые цели эволюции могут никогда не реализоваться. Достаточно серьезным является утверждение, что открытые сложные системы имеют множество путей эволюции. Отсюда всё разнообразие форм, особенно в нелинейном мире. Поставленные в определенные условия, мы всякий раз реализуем одну из возможных форм организации, одну из потенциальных структур. Эта структура не какая угодно, она адекватна одной из форм самоструктурализации системы. Выход на структуру-аттрактор определяется некими принципами наиболее устойчивого развития процесса, причем именно устойчивого развития, а не стационарного состояния.

«Ритмы жизни» природы

«Мудрость нам единая дана:

Всему живому идти путем зерна».

В.Ф.Ходасевич, 1917

Никто не будет спорить о том, что все живое подвержено определенным ритмам жизни. Диалектика жизни, диалектика циклической смены состояний – подъема и спада активности, бодрствования и сна, жизни, умирания и смерти – символически представлена в восточном образе инь-ян. Пик расцвета содержит в себе «червоточину» падения, ночь начинается в полдень, когда ян слабеет и в нем начинает разрастаться зерно инь. Как говорится в одной из даосских притч, «в жизни существует зарождение, в смерти существует возвращение, начала и концы друг другу противоположны, но не имеют начала, и [когда] им придет конец – неведомо» [6] . ??? Зерно – это инь, это сплошная потенциальность и устремленность. А растение – это ян, это ставшее, актуализированное, завершенное. Инь символизирует неопределенность и неоднозначность, блуждание в эволюционном лабиринте, а ян – завершенность, реализацию цели и построение целого. Неслучайно, видимо, «цель» и «целое» этимологически близки друг другу. Аналогичные смыслы стягивает в себе греческое «телос». ?????? означает «законченный, полный» и в то же время «оконченный, высший». Синергетика убедительно демонстрирует нам, что в самом фундаменте природы, как живой, так и неживой, заложен принцип инь-ян. Это – принцип развертывания и свертывания, эволюции и инволюции, роста и вымирания, развития и угасания. Широко распространенные в природе нелинейные положительные обратные связи обусловливают развитие структур в режиме с обострением, что свидетельствует о том, что «время жизни» структур ограничено. Под режимами с обострением понимаются сверхбыстрые процессы, когда характерные величины (например, температура, энергия, концентрация, денежный капитал) неограниченно возрастают за конечное время, называемое временем обострения [7] . Если фактор, создающий неоднородности в среде (действие нелинейных объемных источников), работает сильнее, чем рассеивающий, диссипативный фактор, то возникают локализованные процессы и сходящиеся внутри области локализации волны горения. Процесс развивается все более интенсивно во все более и более узкой области вблизи максимума. Это – так называемый LS-режим с обострением. Но, оказывается, возникшая в LS-режиме сложная локализованная структура лишь относительно устойчива. Вблизи момента обострения она становится неустойчивой, чувствительной к малым возмущениям и распадается. Наличие момента обострения, т.е. конечность времени существования сложной структуры, само по себе поразительно. Чтобы возникла структура, необходим LS-режим, а последний приводит к неустойчивости. Получается, что сложная структура существует только потому, что она существует конечное время. Жить конечное время, чтобы вообще жить. Или иначе: лишь смертное способно к самоорганизации. Хотите получить локализацию, сложную структуру, значит ее время жизни ограничено моментом обострения. Сам факт преодоления хаоса, удержания его в определенной форме предполагает конечность жизни сложной структуры. И второй не менее важный результат нелинейного анализа. Для широкого класса уравнений с сильно нелинейными источниками показано существование двух противоположных, взаимодополнительных режимов. Предполагается, что процесса распада сложной структуры, развивающейся в LS-режиме роста (температуры) с обострением можно избежать, если во время (за счет флуктуаций, хаоса) происходит переключение на иной режим, HS-режим. Это – режим снижения интенсивности (падения температуры) и «неограниченно разбегающейся волны», возобновления процессов по старым следам. Распад (хотя бы частичный) заменяется объединением, максимальное развитие неоднородностей – их замыванием, сглаживанием. В результате вычислительных экспериментов получено и исследовано пока только переключение с HS- на LS-режим. Обратное переключение (с LS- на HS-режим) для сред с сильной нелинейностью можно рассматривать как гипотезу, как результат теоретического моделирования на основе анализа фазовой плоскости, полученной методом осреднения. Синергетика склоняет нас к выводу о том, что законы ритма, циклической смены состояний универсальны. Для человека это – день и ночь, смена его бодрствования и сна. Для живой природы это – лето и зима. Летом биологические процессы ускоряются, а зимой – замедляются. Такого рода пульсации характерны и для неживой природы. Известны колебательные режимы в химических реакциях, например в реакции Белоусова-Жаботинского. Это – так называемые «химические часы». Согласно одной из космологических гипотез, если скрытая масса вещества во Вселенной больше некоторой критической, то сегодняшняя стадия расширения наблюдаемой Вселенной, «разбегания всего от всего» должна смениться стадией сжатия, «схлопывания к центру». Развиваются представления о пульсационном развитии Земли (по многим эндо- и экзогенным процессам) и синхронной с ним эволюции жизни на планете. Земля то расширяется, то сжимается, как будто она дышит. Более чем в 60-ти различных типов задач исследуются сегодня режимы с обострением. Они охватывают широкий спектр процессов, начиная с классических механических процессов кумуляции и коллапсов, с химической кинетики и метеорологии, и кончая моделированием процессов в нейрофизиологии, эпидемиологии, экономике. Переключение HS и LS-режимов является математическим эквивалентом процессов типа инь-ян. LS-режим с обострением – это ускорение процессов, стягивание к центру и проявление потенциального. А HS-режим – это замедление процессов, разлет и «возобновление старых следов», погружение в прошлое, обращение к царству непроявленного.
Стареют ли атомы?

«Снова будут небеса, -

Не такие же, как наши…»

Ф.Сологуб, 1902

В квантовой механике утверждается неразличимость, тождественность всех элементарных частиц одного сорта, а равным образом и атомов. Предполагается, что все микрообъекты одного типа одинаковы, поэтому нельзя отличить, скажем, один фотон от другого или один атом водорода от другого атома водорода. Синергетический взгляд на мир – взгляд эволюционный. Эволюция имеет сквозной характер. Она пронизывает все уровни организации неживого и живого. Нынешняя эра эволюции Вселенной связана с разлетом галактик. С эволюционной точки зрения можно попытаться подойти и к атому. Тогда и на уровне атомного уровня организации мира можно усмотреть аналоги жизни и даже аналоги истории. Как уже упоминалось, можно подойти к пониманию квантово-механической реальности, решая классическую задачу, квазилинейное уравнение теплопроводности с нелинейным источником. В таком случае может быть предложена модель атома как структуры горения нелинейной среды. Разумеется, это пока только постановка для дальнейшего исследования. Стабильный, с неизменными уровнями атом, каким он рассматривается в стационарной задаче Шрёдингера в квантовой механике, подпадает под такого рода модель, модель развития процессов в режимах с обострением, вероятно, только на квазистационарной стадии. Режимы с обострением же – это такие режимы, которые наряду со стадией сверхбыстрого нарастания процессов имеют длительную квазистационарную стадию. Итак, модель водородоподобного атома описывается уравнением теплопроводности с распределенной плотностью и источником. Автомодельное распределение имеет некие неоднородности температуры, соответствующие устойчивым состояниям (уровням) атома. В данной задаче есть горение, теплопроводность (рассасывающий неоднородности фактор) и есть заданное распределение плотности. На квазистационарной стадии распределение температуры практически не меняется. Поэтому можно полагать, что мы имеем дело с уровнями, «замершими» на определенных расстояниях от центра. Но если мы начинаем рассматривать бoльшие промежутки времени, выходить за пределы квазистационарной стадии, то обнаруживаем, что «волны горения» сходятся, сбегаются к центру, к аналогу ядра атома. «Жизни» атома соответствует LS-режим с обострением, режим «сбегающейся волны», когда интенсивность процесса увеличивается во все более узкой области у центра. Взгляд на атом как на локализованный квазистационарный процесс в среде, имеющий сложную структуру, по-видимому, плодотворен, ибо он позволяет объяснить некоторые факты, к примеру, эффект красного смещения. До сих пор предполагается, что ряд различных факторов может порождать феномен красного смещения.

Во-первых, согласно привычному, наиболее распространенному толкованию, этот феномен может быть обусловлен фактором разлета галактик, «разбегания всего от всего» на нынешней стадии эволюции Вселенной, сопровождающимся эффектом Доплера.
Во-вторых, некоторые ученые придерживаются той версии, что за эффект «покраснения квантов» может быть ответственно временное изменение квантов излучения, «старение» квантов.
В-третьих, в рассматриваемой нами модели этот эффект может быть обусловлен фактором «старения» самих атомов. Здесь всё построено на эволюции во времени, в том числе и атом может представлять собой меняющуюся во времени организацию.
Свет от галактик, которые находятся на значительных расстояниях от нас, доходит до нас за огромные промежутки времени. Мы видим эти галактики в прошлом, такими, какими они были миллионы лет тому назад. Это далекое прошлое, свидетельства о котором к нам попадают со все более дальних расстояний, соответствует, с нашей точки зрения, ранним стадиям эволюции атомов. Уровни тех атомов, свет от которых мы наблюдаем, должны были быть дальше от центра, а затем они медленно приближаются к ядру. По мере ухода в прошлое мы наблюдаем атомы, энергетические уровни которых расположены все дальше от ядра. А это эквивалентно красному смещению. В принципе можно получить значение константы красного смещения, исходя из тех констант нелинейной среды, которые мы получили, моделируя атом как сходящиеся волны горения в LS-режиме. При таком подходе не разлет галактик, а «старение» атомов могут приводить к эффекту красного смещения. Рост и расширение масштабов Вселенной может означать, что на макроуровне в отличие от микроуровня есть HS-режим растяжения всех масштабов. Причем масштабы могут расширяться, даже если галактики не имеют никакой механической скорости. Они могут расширяться из-за «разбухания самого пространства», из-за HS-режима охлаждения. Для внешнего наблюдателя картина выглядит так, как будто галактики разлетаются с большой скоростью. Попытки построить модель атома как некой эволюционирующей структуры в среде, структуры, имеющей свою историю, представляют интерес. Если удастся последовательно развить эту модель, то можно будет полагать, что и в микромире есть эволюционные процессы, только изменения становятся ощутимыми за гигантские промежутки времени.

Имеет ли неживое память?

«Но твой, природа, мир о днях былых молчит

С улыбкою двусмысленной и тайной».

Ф.И.Тютчев, 1830

Некоторые любопытные явления нелинейного мира указывают на элементы «памяти» в том числе и в процессах неживой природы.

Во-первых, это – возобновление старых следов в HS-режиме . Выше говорилось о том, что в средах с достаточно сильной нелинейностью, вероятно, может происходить самопроизвольное переключение LS и HS-режимов. Режим нарастания интенсивности процесса и сбегания к центру (LS-режим) сменяется режимом охлаждения и растекания (HS-режимом) и т.д., процессы типа ян сменяются процессами типа инь. В HS-режиме происходит расплывание процесса преимущественно по старым следам, так как теплопроводность участков среды со старыми следами из-за нелинейности коэффициента теплопроводности существенно выше, чем «холодных» областей остальной среды. Но все-таки расплывание, хотя и слабо, осуществляется и в холодную среду, т.е. структура все более симметризуется, ее форма вырождается из сложной в простую. Поэтому хотя замыкание циклов взаимного переключения противоположно направленных режимов намного продлевает «жизнь» структуры с сильной нелинейностью, однако оно не может сделать ее бессмертной. Накопление элементов «памяти» приводит к «старению» и, в конце концов, к «смерти» сложных структур, несмотря на их ритмический образ жизни типа инь-ян. В процессах эволюции сложных структур прошлое не исчезает. Оно остается существовать в ином, более медленном, или менее интенсивном («тонком»), темпомире. Интенсивные процессы у центра в LS-режиме – это быстрый темпомир. А следы растекания и угасания HS-режиме, остающиеся на периферии сложной структуры, – это медленный темпомир. Возврат к прежним медленным процессам представляет собой в некотором смысле аналог подсознания и еще более глубокой видовой памяти в рассматриваемой модели мира. Вообще говоря, ничто не исчезает, но все продолжает гореть в ином, медленном и мало ощутимом для нас темпомире. Аналогично, подсознание человека является хранилищем всего того, что человек когда-либо видел, слышал, делал и знал. Может быть, и не стоит этому слишком удивляться. Ведь в физике давно известны такие процессы, когда поведение системы зависит не только от величины внешнего воздействия на нее и собственных флуктуаций сейчас, но и от характера процессов, протекавших в ней в предшествующие моменты времени. Это – гистерезис, например, остаточная намагниченность, остаточные деформации и т.п. История системы влияет на ее поведение в настоящем.
Во-вторых, память – это информация о прошлом, содержащаяся в сложной эволюционной структуре . Определенные фрагменты (пространственные области) синхронического среза структуры являются индикатором прошлого развития структуры в целом, а другие фрагменты – ее будущего развития. Например, если структура развивается с обострением в схлопывающемся к центру режиме (LS-режиме), то наличный ход процессов в центре свидетельствует о характере прошлого развития всей структуры, а ход процессов на периферии сейчас – о характере ее будущего развития. Эта интересная закономерность пространственной организации сложных эволюционных структур вытекает из того факта, что структуры-аттракторы описываются инвариантно-групповыми решениями. В инвариантах, как известно, пространство и время не свободны, а определенным образом увязаны друг на друга. Отсюда и возникает возможность извлекать информацию о прошлом развитии и будущих тенденциях сложной структуры из синхронического среза структуры-аттрактора.
В-третьих, память – это строительство по образцу , размножение по матрице, имеющее место в эволюционных процессах. Элементы памяти играют роль катализатора, позволяют существенно ускорить эволюцию, не повторять длительный исторический путь блужданий и случайного отбора. Кроме того, через память объединяются сложные структуры, связываются в единое целое. Это, – если можно так выразиться, эволюционный клей. Наконец, существует тонкое взаимодействие, когда структуры могут быть соединены в единое целое через слабые следы, или «хвосты», медленных, казалось бы, совершенно исчезнувших процессов, через «просачивание» процессов за пределы области их эффективной локализации. При топологически правильном объединении происходит выход в другой темпомир, ускорение развития возникшей структуры.
«Природа знать не знает о былом», - говорит нам Ф.И.Тютчев. Синергетика заставляет нас усомниться в правильности этих слов. Наверно, природа все-таки знает о былом. Проблема же состоит в том, чтобы научиться вычитывать в эволюционных структурах информацию о ее прежних состояниях и процессах. Память... Может быть, это не только осознание прежнего опыта, но и сама информация о прошлом, разлитая по Вселенной. Представление о памяти объективизируется. Память – это не то, что помним мы, но то, что помнит нас. Память неживого... Разве это просто метафора?

Два пути природы: путь отбора через хаос и путь резонансного возбуждения

«И тайна жизни – два пути –

Ведут к единой цели оба.

И все равно, куда идти».

Д.С.Мережковский, 1901

Длительный и многотрудный путь эволюции природы – это путь преодоления хаоса и возникновения структур. Это – путь случайных вариаций, жестокой конкуренции и выживания сильнейших. Диссипативные процессы осуществляют «выедание». Затухание «ненужного» благодаря хаосу на микроуровне лежит в основе выхода на структуры-аттракторы эволюции. Так протекала в течение нескольких миллиардов лет космическая и биологическая эволюция. Но является ли такой путь единственно возможным? Живая природа научилась многократно сокращать время выхода на нужные структуры посредством составления генетических программ, матричного дублирования – ДНК. ДНК как носитель наследственности становится некой матрицей, по которой строятся сложные белковые тела, биологические среды. Можно создавать сложное достаточно быстро, не повторяя весь чудовищно сложный и длительный путь эволюции природы. Она умеет в миллионы раз сокращать путь от простой клетки к сложнейшему организму. Ведь ни одна сложная живая система в ходе своего онтогенеза не проходит снова весь филогенетический путь эволюции. В этом великая тайна морфогенеза! Строительство по образцу, матричное дублирование является некой формой резонансного возбуждения. Иначе говоря, механизм «штамповки» типа редупликации ДНК, действующий в открытых нелинейных системах, называется резонансным возбуждением. Да, оба пути ведут к единым целям, к структурам-аттракторам эволюции. И в этом Д.С.Мережковский прав. Но не все равно, куда идти, не все равно, какой путь выбрать. Путь отбора через хаос – это медленный путь эволюции природы, путь случайных вариаций и эволюционного отбора, постепенного перехода от простых структур к все более сложным. Путь резонансного возбуждения – это быстрый переход к сложному. Это – путь многократного сокращения временных затрат и материальных усилий, путь инициирования желаемых и – что не менее важно – реализуемых на данной среде структур. Вместе с тем это – и путь йоги. Именно йоги убеждены в том, что знают лестницу кратчайшего пути к идеальному, к совершенной форме, образцу. Медитация позволяет реализовать кратчайший выход на структуру-аттрактор, когда происходит кристаллизация духа, высшего знания, таланта. Вся природа устроена так, что в ней действуют принципы экономии и ускорения эволюции. Ускорения темпа процессов имеет место в режимах с обострением, которые характерны, как для мира живой, так и мертвой природы при наличии в последней петель нелинейной положительной обратной связи. Посредством резонансного возбуждения происходит сжатие процессов во времени. Природа выработала в результате эволюции определенные механизмы, которые в простых нелинейных моделях преднамеренно воссоздаются путем резонансных воздействий на открытую нелинейную среду. Надо правильно «укалывать» среду, т.е. производить малые воздействия на нее в нужное время и в нужном месте. Надо правильно пространственно распределять эти воздействия. Ибо важна не сила (величина, длительность, всеохватность и т.п.) управляющего воздействия, а его «архитектура», пространственная конфигурация, топология, в частности пространственная симметрия. Если воздействовать на среду конфигурационно согласованно с ее собственными структурами, то она будет развертывать перед нами скрытые в ней разнообразные формы. Будет происходить самоорганизация, раскрытие сокровенного, реализация потенциального. И пусть не пугают нас филистеры призраком китайского или нашего российского Великого скачка. Природа делает эти скачки, осуществляет это колоссальное сжатие времени эволюции постоянно, во всех актах развития живого.

Ускорение процессов. Катализ

«Мгновение бежит неудержимо… »

Н.Гумилев, 1921

И в мертвом есть механизмы ускорения синтеза сложного, Катализ является одним из наиболее интересных объектов изучения в современной химии. Разрабатываются, в частности, модели процессов, протекающих на поверхности катализатора. На поверхность кристалла, т.е. на какую-то определенную структуру решетки, случайным образом из среды, в которой происходит каталитическая реакция, попадают атомы и закрепляются на этой решетке в результате адсорбции или/и поверхностных реакций. Решетка играет роль матрицы, которая позволяет удерживать атомы на определенных расстояниях. Можно сказать, что на решетке со временем, с некоторым запаздыванием осуществляются аналоги многочастичных столкновений, которые изучаются в синергетике [8]. Причиной сверхбыстрого развития процесса, протекающего на решетке, является резкий рост вероятности сложной реакции, аналога столкновения многих частиц. При каталитическом процессе происходит размножение продукта. В рассматриваемой модели решетка, на которой происходит каталитическая реакция, является не просто ускорителем процесса, но и средством производства вещества заданного типа. Катализатор есть некая матрица, которая позволяет неслучайным образом суммировать случайно попавшие на нее частицы (например, атомы), т.е. осуществлять сложные коллективные взаимодействия. Ускорение процессов имеет место благодаря определенной пространственной организации каталитической поверхности, определенному расположению, диспозиции атомов решетки. Здесь просматривается глубокая связь с представлениями о резонансном возбуждении в синергетике. Правильная топология воздействия на среду равносильна возбуждению в ней собственной структуры, правильному объединению атомов в сложную молекулу. Формой резонансного возбуждения в биологии является редупликация ДНК, строительство по образцу, что позволяет существенно ускорить биологические процессы. В социальной области многие процессы протекают в режиме с обострением: рост населения Земного шара [9] , рост научной информации, всплески в развитии науки и культуры (плеяды талантов), «экономическое чудо», продемонстрированное нами «азиатскими драконами». Например, рост научной информации осуществляется не по экспоненциальному закону, а гораздо быстрее – в режиме с обострением. Информационные потоки создают некую среду. Обмен научной информацией становится способом коллективного взаимодействия ученых при решении научных проблем. Научная информация, слой общепринятого и общераспространенного в научном сообществе знания представляет собой некую социокультурную матрицу, своего рода «каталитическую поверхность», позволяющую соединить усилия многих ученых по исследованию каждой из научных проблем. Эта социокультурная матрица включает в себя общий язык, «способы думать вместе», общие образцы научного исследования и представления результатов, правила общения. Ведь, вообще говоря, каждый отдельный ученый никогда не понимает проблему полностью, «до конца». Он всегда разбивает ее на части, видит лишь один или немногие ее аспекты. Он рассматривает проблему со своей точки зрения, будучи обременен своим собственным «неразумием», «незнанием». Поэтому неправомерно говорить, что проблема проходит или, тем более, уже прошла через одну голову. Она отражается по-разному разными учеными, и именно это продвигает ее решение. Информационные сети, матрицы исследования имеют надындивидуальный, трансперсональный, интерсубъективный характер. Они являются формой «многочастичного столкновения» в научной среде. А коллективность и неоднократность взаимодействий ученых обусловливает то, что рост научной информации является автокаталитическим процессом, что делает понятным наблюдаемый быстрый темп развития науки.

Как части «упаковываются» в целое?

«Как в целом части все, послушною толпою,

Сливаясь здесь, творят, живут одна другою».

И.В.Гёте

Проблема части и целого является одной из наиболее интересных в синергетике и связывается с проблемой совместной эволюции (коэволюции) и ее ускорения при правильном объединении эволюционирующих частей. Способы объединения не произвольны, а обусловлены нелинейными свойствами среды. Как, по каким законам строится эволюционное целое? Как собирается целое из частей? Какова геометрия, вернее, стереометрия объединения? Эту часть синергетического мировидения можно назвать эволюционным холизмом. Известно, что в химических связях существенную роль играет перекрытие электронных оболочек атомов. Сложные молекулы существую благодаря такому перекрытию. При этом для понимания способов объединения используется квантово-механическая модель. Согласно представлениям современной структурной химии, стереохимии, разные геометрии объединения атомов в молекулу или в кристаллическую структуру позволяют создавать среду с разными физическими и химическими свойствами. Всем известный пример – графит и алмаз. По химическому составу они тождественны, а по структурной организации различны. Именно структурные соединения частей в целое, «архитектура» все более сложного целого – это то, что продвигает нас от области неорганической химии к органической химии и далее химии живого, биохимии. В нелинейных моделях синергетики появляются любопытные аналогии названным химическим феноменам. Причем разработка нелинейных моделей вовсе не претендует на вытеснение существующих квантово-механических объяснений. Моделируется мир нелинейных процессов, в котором обнаруживаются похожие свойства. А через аналогию приходит понимание достаточно общих принципов объединения частей в целое. В качестве аналога перекрытия электронных оболочек атомов выступает в нелинейных моделях пересечение областей локализации простых тепловых структур (структур с одним максимумом) при их объединении в сложную тепловую структуру (структуру с многими максимумами). Здесь стоит пояснить наше понимание локализованной структуры на сплошной открытой и нелинейной среде. Благодаря нелинейности интенсивность процессов (например, интенсивность горения среды) в области их эффективной локализации очень быстро возрастает (LS-режим). Процесс горения в LS-режиме, строго говоря, имеет слабо горящие хвосты, уходящие на бесконечность. Область, где интенсивность процесса не спадает ниже некоторого фиксированного уровня (имеет общий момент обострения), называется областью эффективной локализации, или эффективной длиной. Нелинейность среды приводит к преобладающему выделению энергии (ускорению процесса) в более интенсивных источниках тепла и к резкому ослаблению процессов горения в остальных участках среды. Нелинейность обусловливает сильную неоднородность развития процессов в среде, которая соответствует картине источников теплового поля, эффективно локализованных в определенных участках среды, и самой горящей среды, вклад которой в общий процесс роста температуры относительно мал. Это – картина, в которой и поле температуры, и источники поля температуры представляют собой проявление единой субстанции – горения сплошной среды. Однако за счет автокаталитичности (нелинейности источников, зависимости их работы от температуры) в разных участках среды наблюдается чудовищно различная интенсивность процессов (на много порядков по величине). Неоднородность процессов горения в среде рассматривается в этой модели как аналоги локализованных процессов, аналоги микрочастиц, атомов. Причем возможны достаточно сложные организации процессов внутри этих выделенных областей интенсивного (с различными моментами обострения) развития процессов. Из-за существования «хвостов» процессов, уходящих на бесконечность, вообще говоря, все структуры LS-режима пересекаются, соединяются в некое целое. Это проявление всеобщей слабой, или тонкой, связи структур в этом мире. Но в моделях обычно учитывается лишь сильная связь структур, возникающая при пересечении областей их эффективной локализации. Поэтому аналогом молекулярной структуры является суперпозиция простых тепловых структур в сложную благодаря пересечению областей их эффективной локализации. Главной особенностью правильного, резонансного объединения является установление общего темпа развития во всей области сложной структуры (одного момента обострения во всех частях). На современном уровне исследований удается сформулировать ряд принципов интеграции структур, выражаемых через требование согласования, синхронизации темпов развития частей, объединяемых в более быстро эволюционирующее целое. Становится очевидным, что, создавая сложное эволюционное целое, нельзя действовать методом проб и ошибок, но следует руководствоваться правилами нелинейного синтеза [10]. Синергетика показывает, что в сложных открытых и нелинейных системах (средах) существует много путей эволюции, структур-аттракторов. Отсюда разнообразие форм нелинейного мира, в том числе и способов объединения простого в сложное. Но в то же время их количество не бесконечно. Возможные формы нелинейного синтеза ограничены. Возможна интеграция не каких угодно структур, находящихся не на каких угодно стадиях развития. Кроме того, интеграция осуществляется не произвольным образом. Известно, что для получения устойчивых химических соединений (атомов в молекулы) нужно определенным образом перекрыть электронные оболочки атомов. Это перекрытие должно быть не больше и не меньше. Важно отметить, что и в модели тепловых структур также существует определенный оптимум перекрытия. Структуры заполняют определенные уровни, образуют сложные формы локализации. Подчеркнем, что важна не только величина перекрытия, а правильная топологическая организация частей, объединяющихся в целое. Объединение топологически правильно, если оно осуществляется в соответствии с собственными функциями среды, с собственными тенденциями развития процессов в ней. Объединяемые структуры должны быть подобраны «по возрасту», по стадии развития, темпу развития. Это правило понятно для живой природы, но не для мертвой, где представления о «возрасте» атомов кажутся странными и излишними. Для биологических же существ, не говоря уже о социальных организациях, разница в возрасте (в темпах развития) может быть колоссальной. Синтез простых «разновозрастных» структур в одну сложную структуру происходит в определенных классах нелинейных сред посредством установления общего темпа их эволюции (одного момента обострения во всех простых структурах). Например, «разновозрастные» социальные структуры, страны, находящиеся на разных стадиях развития, могут объединяться, приобретая при этом единый темп развития. Синхронизация их темпов развития осуществляется за счет механизмов хаотического типа, рыночных механизмов обмена информацией, материальными ресурсами и продуктами производства. Кроме того, сложные социальные структуры объединяются не мгновенно, а с некоторым запаздыванием, т.е. в этом процессе, как и в катализе, играет роль память. Процесс ускоряется благодаря индивидуальным и коллективным носителям социокультурных матриц знания и общепринятых трафаретов поведения, традиций культуры и норм общественной жизни.

Почему природа так экономна?

«Природа подобна рачительному хозяину, который бережлив там, где нужно, для того чтобы иметь возможность быть щедрым в свое время и в своем месте. Она щедра в своих действиях и бережлива в применяемых ею причинах».

Г.Лейбниц

Во многих случаях в химии просто необъяснимо, почему молекула имеет именно такую стереометрию объединения, а не какую-то другую. Часто это рассматривается просто как экспериментальный факт. Возможный, едва ли не единственный, способ объяснения химических связей и химических структур – это объяснение исходя из вариационных принципов. Показывается, что определенные конфигурации объединения атомов означают наиболее устойчивые состояния, ибо соответствуют минимизации энергии или свободной энергии. Нелинейный анализ и синергетика позволяют принципиально по-другому подойти к поиску наиболее устойчивых состояний и структур природы. Такой поиск можно вести, исходя вовсе не из вариационных принципов минимизации функционалов (энергии, действия и т.п.). Более того, неплохо было бы понять, откуда берутся сами вариационные, или экстремальные, принципы. В синергетике исследуются механизмы самоорганизации природы, т.е. то, как происходит выход на наиболее устойчивые состояния.

Во-первых, показывается, что таких состояний для всякой более или менее сложной системы может быть много. Решение нелинейной задачи приводит к своего рода квантовому эффекту, к выделенности некоторых состояний, к дискретности путей эволюции. Известны, например, два типа «застройки» среды при конвективной неустойчивости. Это – классические, хорошо известные шестигранные ячейки Бенара, образующие структуру типа «пчелиных сот» или же возможные, но менее устойчивые четырехгранные ячейки.
Во-вторых, раскрывается сам механизм выпадения на устойчивые состояния, структуры-аттракторы эволюции. Это механизм «преодоления» хаоса, конкуренции двух начал – хаотического, рассеивающего начала, действующего через диссипативные процессы, и начала, наращивающего неоднородности в среде (благодаря нелинейным объемным источникам). Их взаимное действие приводит к выеданию, обусловливает как бы силу притяжения к аттрактору, отбор из будущего, в соответствии с идеальным образцом, одной из структур-аттракторов.
Синергетика обнаруживает и иной выработанный природой способ экономии, сжатия процессов эволюции по времени. Это – резонансное возбуждение. Малое, но топологически правильно организованное воздействие, воздействие, как говорил Лейбниц, «в свое время и в своем месте», оказывается чрезвычайно эффективным. Ибо оно эквивалентно устойчивым состояниям самой природной среды, собственным формам ее организации. Можно сразу возбудить в среде одну из структур-аттракторов, и притом ту, которая желательна. Можно выйти на аттрактор, минуя длительный путь эволюции к нему с неизбежным уничтожением всего того, что не соответствует его правильной организации. И.Ефремов сказал бы, что можно минимизировать зло, инферны, лишнее выжигание среды и радикально сократить время выхода на аттрактор, сжать время эволюции. Но существует и опасность больших скачков. Надо знать законы правильного устройства аттракторов, адекватных данной среде, а не навязывать среде несвойственные ей формы организации. Принципы экономии играю свою роль и при объединении структур. При правильном объединении приближается момент обострения, т.е. во всей объединенной области устанавливается более высокий темп. Целое развивается быстрее составляющих его частей.

Жизнь природы и жизнь общества

«Скажите мне, что значит человек?

Откуда он, куда идет,

И кто живет под звездным сводом?»

Ф.И.Тютчев, 1827-1830

Синергетическое знание постепенно складывается в некую систему взглядов на мир. Универсальные закономерности эволюции и самоорганизации, открываемые синергетикой, приобретают большее значение, чем та естественнонаучная основа, из которой они рождаются (неравновесная термодинамика, нелинейная динамика, фрактальная геометрия, теория катастроф и самоорганизованная критичность). Философия синергетики выходит далеко за рамки приложений синергетики в физике и химии. Куда течет история? Как приспособится к колоссальному темпу происходящих в мире изменений? Как жить сегодня и что ожидает нас завтра? Как экономически и политически правильно объединять различные регионы? Какая доля хаоса и какая доля внешнего управления необходимы для устойчивого развития социальных организаций? Каковы сценарии прохождения демографического кризиса? Можно поставить с десяток вопросов, волнующих каждого из нас. Синергетика дает общее понимание характера эволюции социальных организаций, взгляд на историю и вероятные сценарии будущего развития. Используя синергетические модели, можно понять, чего в принципе не может быть, какие запреты, обусловленные самой природой сложных социальных организаций, накладываются на способы управляющего социального воздействия. Синергетика становится методологической основой современных исследований будущего [11]. Для выхода социальных систем на собственные пути развития необходимо включение рыночных механизмов. Ведь мы знаем, что природа требует многообразия для естественного отбора. А естественные спонтанные движения на микросоциальном уровне – это в некотором смысле равные возможности, свобода действий, отсутствие привилегированных позиций в среде. Рыночная социальная среда является полигоном для развертывания процессов самоорганизации. Вместе с тем нельзя надеяться на механизмы чисто рыночного типа как на панацею от всех наших бед. Во-первых, рыночный хаос может вывести и на хаос. В качестве одного из возможных путей эволюции в открытых и нелинейных средах остается термодинамическая ветвь, т.е. именно то состояние теплового хаоса, к которому, согласно второму началу термодинамики, идут процессы в замкнутых системах. А это означает возможность краха сложных социальных организаций. Во-вторых, запустив рыночные механизмы, можно долго ждать спонтанного выхода на желаемые структуры-аттракторы. Но нам не отпущено столько времени на выбор пути развития. Раз вся природа устроена по-другому, раз она колоссально стягивает время эволюции, то и в социальной области было бы желательно воспользоваться методами резонансного возбуждения, осуществлять выход на предпочитаемое и осуществимое будущее. Стоит высказать и такое опасение. Пытаясь использовать западноевропейский и американский опыт построения рыночного хозяйства, следует принимать в расчет, что всякая социальная среда таит в себе собственные, отвечающие ее природе, формы организации. Внутренним тенденциям сегодняшней российской среды могут не соответствовать американские образцы, предполагающие достаточно высокий уровень экономического и демократического развития, развитые качества взаимной ответственности и доверия внутри социальных групп и в обществе в целом. Неправомерно просто переносить образцы без учета специфики среды. И последнее. Одна из важнейших надежд сегодня состоит в том, чтобы достаточно быстро реализовать ряд последовательных приближений к желаемым социальным структурам, как говорят математики, провести ряд итераций. Испытывая, что будет адекватно нашей среде и будет устойчивой на ней развиваться, необходимо участить шаг изменений. Необходимо иметь возможность вносить поправки, вовремя исправлять ошибки, корректировать стратегию развития, достаточно быстро перестраиваться, преждевременно не закрепляя формы. Это – необходимое условие работы с неустановившимися нелинейными режимами, со структурами-аттракторами, которые не угаданы точно.

Литература

[1] Князева Е.Н., Курдюмов С.П. Законы эволюции и самоорганизации сложных систем. М.: Наука, 1994. 236 с.

[2] Курдюмов С.П. Собственные функции горения нелинейной среды и конструктивные законы построения ее организации // Современные проблемы математической физики и вычислительной математики. М.: Наука, 1982. С.235-236. См. также статьи и литературу в книге «Наука, технология, вычислительный эксперимент». М.: Наука, 1993.

[3] Петухов С.В. Геометрии живой природы и алгоритмы самоорганизации. М.: Знание, 1988.

[4] Бульенков Н.А. О возможной роли гидратации как ведущего интеграционного фактора в организации биосистем на различных уровнях их иерархии // Биофизика. 1991. Т.36. Вып.2. С.181-243.

[5] Григорьева Т.П. Дао и Логос (встреча культур). М., 1992.

[6] Даосские притчи. М., 1992. С.60.

[7] Режимы с обострением. Эволюция идеи: Законы коэволюции сложных структур. М.: Наука, 1999. 255 с.

[8] Еленин Г.Г., Слинько М.Г. Математическое моделирование элементарных процессов на поверхности катализатора // Наука, технология, вычислительный эксперимент. М.: Наука, 1993. С.99-139.

[9] Капица С.П. Общая теория роста человечества. М.: Наука, 1999.190 с.

[10] См. об этом: Курдюмов С.П., Князева Е.Н. Квантовые правила нелинейного синтеза коэволюционирующих структур // Философия, наука, цивилизация. Москва: Эдиториал Урсс, 1999. С.222-230.

[11] Капица С.П., Курдюмов С.П., Малинецкий Г.Г. Синергетика и прогнозы будущего. М.: Наука, 1997. Knyazeva H. Synergetics and the Images of Future. // Futures. 1999. Vol.31., N 3/4. P.281-290.

ВЕРНУТЬСЯ В РАЗДЕЛ ВЕРНУТЬСЯ НА ГЛАВНУЮ СТРАНИЦУ
САЙТА С.П. КУРДЮМОВА "СИНЕРГЕТИКА"

воскресенье, 20 декабря 2009 г.

Discover Interview What Makes You Uniquely "You"?

Discover Interview What Makes You Uniquely "You"?
Nobel laureate Gerald Edelman says your brain is one-of-a-kind in the history of the universe.

by Susan Kruglinski
From the February 2009 issue, published online January 16, 2009

Yahoo! BuzzShareThisShareThis


Some of the most profound questions in science are also the least tangible. What does it mean to be sentient? What is the self? When issues become imponderable, many researchers demur, but neuro­scientist Gerald Edelman dives right in.

A physician and cell biologist who won a 1972 Nobel Prize for his work describing the structure of antibodies, Edelman is now obsessed with the enigma of human consciousness—except that he does not see it as an enigma. In Edelman’s grand theory of the mind, consciousness is a biological phenomenon and the brain develops through a process similar to natural selection. Neurons proliferate and form connections in infancy; then experience weeds out the useless from the useful, molding the adult brain in sync with its environment.

Edelman first put this model on paper in the Zurich airport in 1977 as he was killing time waiting for a flight. Since then he has written eight books on the subject, the most recent being Second Nature: Brain Science and Human Knowledge. He is chairman of neurobiology at the Scripps Research Institute in San Diego and the founder and director of the Neurosciences Institute, a research center in La Jolla, California, dedicated to unconventional “high risk, high payoff” science.


--------------------------------------------------------------------------------

advertisement | article continues below
MOST READ - ADVERTISEMENT -
News From The Worlds Of History, Gemology,
And Science.
1. World's most famous diamond found inside toaster
2. Official Watch of Rock and Roll.
3. Cache Of Giant Raw Diamonds Found
4. 1930's Antique Speedometer Found On A Wrist
5. $200 Reward Offered for Giant Pear
6. Over 100,000 sets of pearls given away
7. U.S. Clock Loses 1 Second in 20 Million Years
8. Chemist shocks Diamond Trade
9. The curse of the perfect gift

www.stauer.com





--------------------------------------------------------------------------------


In his conversation with DISCOVER contributing editor Susan Kruglinski, Edelman delves deep into this untamed territory, exploring the evolution of consciousness, the narrative power of memory, and his goal of building a humanlike artificial mind.

This year marks the 150th anniversary of The Origin of Species, and many people are talking about modern interpretations of Charles Darwin’s ideas. You have one of your own, which you call Neural Darwinism. What is it?
Many cognitive psychologists see the brain as a computer. But every single brain is absolutely individual, both in its development and in the way it encounters the world. Your brain develops depending on your individual history. What has gone on in your own brain and its consciousness over your lifetime is not repeatable, ever—not with identical twins, not even with conjoined twins. Each brain is exposed to different circumstances. It’s very likely that your brain is unique in the history of the universe. Neural Darwinism looks at this enormous variation in the brain at every level, from biochemistry to anatomy to behavior.

How does this connect to Darwin’s idea of natural selection?
If you have a vast population of animals and each one differs, then under competition certain variants will be fitter than others. Those variants will be selected, and their genes will go into the population at a higher rate. An analogous process happens in the brain. As the brain forms, starting in the early embryo, neurons that fire together wire together. So for any individual, the microconnections from neuron to neuron within the brain depend on the environmental cues that provoke the firing. We have the extraordinary variance of the brain reacting to the extraordinary variance of the environment; all of it contributes to making that baby’s brain change. And when you figure the numbers—at least 30 billion neurons in the cortex alone, a million billion connections—you have to use a selective system to maintain the connections that are needed most. The strength of the connections or the synapses can vary depending on experience. Instead of variant animals, you have variant microcircuits in the brain.

What has gone on in your own brain and its consciousness over your lifetime is not repeatable, ever—not with identical twins, not even with conjoined twins.Before talking about how this relates to consciousness, I’d like to know how you define consciousness. It’s hard to get scientists even to agree on what it is.
William James, the great psychologist and philosopher, said consciousness has the following properties: It is a process, and it involves awareness. It’s what you lose when you fall into a deep, dreamless slumber and what you regain when you wake up. It is continuous and changing. Finally, consciousness is modulated or modified by attention, so it’s not exhaustive. Some people argue about qualia, which is a term referring to the qualitative feel of consciousness. What is it like to be a bat? Or what is it like to be you or me? That’s the problem that people have argued about endlessly, because they say, “How can it be that you can get that process—the feeling of being yourself experiencing the world—from a set of squishy neurons?”

What is the evolutionary advantage of consciousness?
The evolutionary advantage is quite clear. Consciousness allows you the capacity to plan. Let’s take a lioness ready to attack an antelope. She crouches down. She sees the prey. She’s forming an image of the size of the prey and its speed, and of course she’s planning a jump. Now suppose I have two animals: One, like our lioness, has that thing we call consciousness; the other only gets the signals. It’s just about dusk, and all of a sudden the wind shifts and there’s a whooshing sound of the sort a tiger might make when moving through the grass, and the conscious animal runs like hell but the other one doesn’t. Well, guess why? Because the animal that’s conscious has integrated the image of a tiger. The ability to consider alternative images in an explicit way is definitely evolutionarily advantageous.

I’m always surprised when neuroscientists question whether an animal like a lion or a dog is conscious.
There is every indirect indication that a dog is conscious—its anatomy and its nervous system organization are very similar to ours. It sleeps and its eyelids flutter during REM sleep. It acts as if it’s conscious, right? But there are two states of consciousness, and the one I call primary consciousness is what animals have. It’s the experience of a unitary scene in a period of seconds, at most, which I call the remembered present. If you have primary consciousness right now, your butt is feeling the seat, you’re hearing my voice, you’re smelling the air. Yet there’s no consciousness of consciousness, nor any narrative history of the past or projected future plans.

Next Page » [1] 2 3
Related Articles
Discover Interview Roger Penrose Says Physics Is Wrong, From String Theory to Quantum Mechanics
One of the greatest thinkers in physics says the human brain—and the universe itself—must function according to some theory we haven't yet discovered. October 06, 2009

Discover Interview Thanks, Evolution, For Making the Great Building Material Called DNA
Electronic computers are great at what they do. But to accomplish really complicated physical tasks—like building an insect—Erik Winfree says you have to grow them from DNA. August 11, 2009

Discover Interview The Man Who Found Quarks and Made Sense of the Universe
Murray Gell-Mann had a smash success with particles, notorious dustups with Feynman, and a missed opportunity with Einstein. March 17, 2009

Discover Interview DNA Agrees With All the Other Science: Darwin Was Right
Molecular biologist Sean Carroll shows how evolution happens, one snippet of DNA at a time February 19, 2009

Discover Interview Why Did Western Drs. Promote Tobacco While the Nazis Fought Cancer?
Robert Proctor looks at the way knowledge advances—and sometimes takes great leaps backwards. January 08, 2009
Latest News Blogs Most Popular
The Bizarre and Brilliant World of Knitted Science
How Autistic Artists See the World
Eye Color Explained
Each Grain of Sand a Tiny Work of Art
The Brain: What Is the Speed of Thought?
#91: The Strange Ancient Process That Made Earth's Oxygen
#93: Re-Analyzing One of the Greatest Brains in History
The Brain: Humanity's Other Basic Instinct: Math
#92: Nowhere to Hide From the Buzz of Civilization
#95: Hidden Caribou-Hunting Civilization Found Under Lake Huron
Video for Owning the Weather Panel in Copenhagen
Easy-reading chiropractic libel for young readers
Create your own tour of the Universe!
Geek culture
Republicans Thrash Climate Scientists in the Court of Public Opinion
Terroreidolia
New Especially Bad Heroin Can Give You an Overdose—or Anthrax
From Tibet to Infinity and back again
Ocean Volcano Eruption!!
Furious Fanboys Plan “Operation Stranglehold” to Take Down AT&T
Lab-Created Platelets Slow Bleeding in Rodents
Physicists Find Hints of Dark Matter But No Clear Discovery
The Mutations That Kill: 1st Cancer Genomes Sequenced
Copenhagen Roundup: Protests, Walkouts, and the Money Wars
A Hack of the Drones: Insurgents Spy on Spy Planes With $26 Software
Study: Like Earthquakes & Financial Markets, Terrorist Attacks Follow Laws ...
New Super-Earth: Hot, Watery, and Nearby
Injured Vet Receives Transplanted Pancreas Grown From a Few Cells
Scientist Smackdown: Are Unnecessary CT Scans Killing People?
Gravity Satellites Show a Huge Groundwater Loss in California



Name

Address

Address

City State Zip Code

Email Address


(U.S. orders only) DISCOVER is published monthly except two double issues which count as two each. Savings based on a $29.95 annual subscription rate.



How does this primary consciousness contrast with the self-consciousness that seems to define people?
Humans are conscious of being conscious, and our memories, strung together into past and future narratives, use semantics and syntax, a true language. We are the only species with true language, and we have this higher-order consciousness in its greatest form. If you kick a dog, the next time he sees you he may bite you or run away, but he doesn’t sit around in the interim plotting to remove your appendage, does he? He can have long-term memory, and he can remember you and run away, but in the interim he’s not figuring out, “How do I get Kruglinski?” because he does not have the tokens of language that would allow him narrative possibility. He does not have consciousness of consciousness like you.

How did these various levels of consciousness evolve?
About 250 million years ago, when therapsid reptiles gave rise to birds and mammals, a neuronal structure probably evolved in some animals that allowed for interaction between those parts of the nervous system involved in carrying out perceptual categorization and those carrying out memory. At that point an animal could construct a set of discriminations: qualia. It could create a scene in its own mind and make connections with past scenes. At that point primary consciousness sets in. But that animal has no ability to narrate. It cannot construct a tale using long-term memory, even though long-term memory affects its behavior. Then, much later in hominid evolution, another event occurred: Other neural circuits connected conceptual systems, resulting in true language and higher-order consciousness. We were freed from the remembered present of primary consciousness and could invent all kinds of images, fantasies, and narrative streams.

So if you take away parts of perception, that doesn’t necessarily take away the conceptual aspects of consciousness.
I’ll tell you exactly—primitively, but exactly. If I remove parts of your cortex, like the visual cortex, you are blind, but you’re still conscious. If I take out parts of the auditory cortex, you’re deaf but still conscious.



--------------------------------------------------------------------------------

advertisement | article continues below
MOST READ - ADVERTISEMENT -
News From The Worlds Of History, Gemology,
And Science.
1. World's most famous diamond found inside toaster
2. Official Watch of Rock and Roll.
3. Cache Of Giant Raw Diamonds Found
4. 1930's Antique Speedometer Found On A Wrist
5. $200 Reward Offered for Giant Pear
6. Over 100,000 sets of pearls given away
7. U.S. Clock Loses 1 Second in 20 Million Years
8. Chemist shocks Diamond Trade
9. The curse of the perfect gift

www.stauer.com





--------------------------------------------------------------------------------


But consciousness still resides in the brain. Isn’t there a limit to how much we can lose and still lay claim to qualia—to consciousness—in the human sense?
The cortex is responsible for a good degree of the contents of consciousness, and if I take out an awful lot of cortex, there gets to be a point where it’s debatable as to whether you’re conscious or not.

For example, there are some people who claim that babies born without much cortex—a condition called hydran­encephaly—are still conscious because they have their midbrain. It doesn’t seem very likely. There’s a special interaction between the cortex and the thalamus, this walnut-size relay system that maps all senses except smell into the cortex. If certain parts of the thalamo­cortical system are destroyed, you are in a chronic vegetative state; you don’t have consciousness. That does not mean consciousness is in the thalamus, though.

If you touch a hot stove, you pull your finger away, and then you become conscious of pain, right? So the problem is this: No one is saying that consciousness is what causes you to instantly pull your finger away. That’s a set of reflexes. But consciousness sure gives you a lesson, doesn’t it? You’re not going to go near a stove again. As William James pointed out, consciousness is a process, not a thing.

Can consciousness be artificially created?
Someday scientists will make a conscious artifact. There are certain requirements. For example, it might have to report back through some kind of language, allowing scientists to test it in various ways. They would not tell it what they are testing, and they would continually change the test. If the artifact corresponds to every changed test, then scientists could be pretty secure in the notion that it is conscious.

At what level would such an artifact be conscious? Do you think we could make something that has consciousness equivalent to that of a mouse, for example?
I would not try to emulate a living species because—here’s the paradoxical part—the thing will actually be nonliving.

Yes, but what does it mean to be alive?
Living is—how shall I say?—the process of copying DNA, self-replication under natural selection. If we ever create a conscious artifact, it won’t be living. That might horrify some people. How can you have consciousness in something that isn’t alive? There are people who are dualists, who think that to be conscious is to have some kind of special immaterial agency that is outside of science. The soul, floating free—all of that.

There might be people who say, “If you make it conscious, you just increase the amount of suffering in this world.” They think that consciousness is what differentiates you or allows you to have a specific set of beliefs and values. You have to remind yourself that the body and brain of this artifact will not be a human being. It will have a unique body and brain, and it will be quite different from us.

If you could combine a conscious artifact with a synthetic biological system, could you then create an artificial consciousness that is also alive?
Who knows? It seems reasonably feasible. In the future, once neuroscientists learn much more about consciousness and its mechanism, why not imitate it? It would be a transition in the intellectual history of the human race.

Do you believe a conscious artifact would have the value of a living thing?
Well, I would hope it would be treated that way. Even if it isn’t a living thing, it’s conscious. If I actually had a conscious artifact, even though it was not living, I’d feel bad about unplugging it. But that’s a personal response.

« Previous Page Next Page » 1 [2] 3
Related Articles
Discover Interview Roger Penrose Says Physics Is Wrong, From String Theory to Quantum Mechanics
One of the greatest thinkers in physics says the human brain—and the universe itself—must function according to some theory we haven't yet discovered. October 06, 2009

Discover Interview Thanks, Evolution, For Making the Great Building Material Called DNA
Electronic computers are great at what they do. But to accomplish really complicated physical tasks—like building an insect—Erik Winfree says you have to grow them from DNA. August 11, 2009

Discover Interview The Man Who Found Quarks and Made Sense of the Universe
Murray Gell-Mann had a smash success with particles, notorious dustups with Feynman, and a missed opportunity with Einstein. March 17, 2009

Discover Interview DNA Agrees With All the Other Science: Darwin Was Right
Molecular biologist Sean Carroll shows how evolution happens, one snippet of DNA at a time February 19, 2009

Discover Interview Why Did Western Drs. Promote Tobacco While the Nazis Fought Cancer?
Robert Proctor looks at the way knowledge advances—and sometimes takes great leaps backwards. January 08, 2009
Latest News Blogs Most Popular
The Bizarre and Brilliant World of Knitted Science
How Autistic Artists See the World
Eye Color Explained
Each Grain of Sand a Tiny Work of Art
The Brain: What Is the Speed of Thought?
#91: The Strange Ancient Process That Made Earth's Oxygen
#93: Re-Analyzing One of the Greatest Brains in History
The Brain: Humanity's Other Basic Instinct: Math
#92: Nowhere to Hide From the Buzz of Civilization
#95: Hidden Caribou-Hunting Civilization Found Under Lake Huron
Video for Owning the Weather Panel in Copenhagen
Easy-reading chiropractic libel for young readers
Create your own tour of the Universe!
Geek culture
Republicans Thrash Climate Scientists in the Court of Public Opinion
Terroreidolia
New Especially Bad Heroin Can Give You an Overdose—or Anthrax
From Tibet to Infinity and back again
Ocean Volcano Eruption!!
Furious Fanboys Plan “Operation Stranglehold” to Take Down AT&T
Lab-Created Platelets Slow Bleeding in Rodents
Physicists Find Hints of Dark Matter But No Clear Discovery
The Mutations That Kill: 1st Cancer Genomes Sequenced
Copenhagen Roundup: Protests, Walkouts, and the Money Wars
A Hack of the Drones: Insurgents Spy on Spy Planes With $26 Software
Study: Like Earthquakes & Financial Markets, Terrorist Attacks Follow Laws ...
New Super-Earth: Hot, Watery, and Nearby
Injured Vet Receives Transplanted Pancreas Grown From a Few Cells
Scientist Smackdown: Are Unnecessary CT Scans Killing People?
Gravity Satellites Show a Huge Groundwater Loss in California



Name

Address

Address

City State Zip Code

Email Address


(U.S. orders only) DISCOVER is published monthly except two double issues which count as two each. Savings based on a $29.95 annual subscription rate.





By proposing the possibility of artificial consciousness, are you comparing the human brain to a computer?
No. The world is unpredictable, and thus it is not an unambiguous algorithm on which computing is based. Your brain has to be creative about how it integrates the signals coming into it. And computers don’t do that. The human brain is capable of symbolic reference, not just syntax. Not just the ordering of things as you have in a computer, but also the meaning of things, if you will.

There’s a neurologist at the University of Milan in Italy named Edoardo Bisiach who’s an expert on a neuropsychological disorder known as anosognosia. A patient with anosognosia often has had a stroke in the right side, in the parietal cortex. That patient will have what we call hemineglect. He or she cannot pay attention to the left side of the world and is unaware of that fact. Shaves on one side. Draws half a house, not the whole house, et cetera. Bisiach had one patient who had this. The patient was intelligent. He was verbal. And Bisiach said to him, “Here are two cubes. I’ll put one in your left hand and one in my left hand. You do what I do.” And he went through a motion.

And the patient said, “OK, doc. I did it.”

Bisiach said, “No, you didn’t.”

He said, “Sure I did.”


--------------------------------------------------------------------------------

advertisement | article continues below
MOST READ - ADVERTISEMENT -
News From The Worlds Of History, Gemology,
And Science.
1. World's most famous diamond found inside toaster
2. Official Watch of Rock and Roll.
3. Cache Of Giant Raw Diamonds Found
4. 1930's Antique Speedometer Found On A Wrist
5. $200 Reward Offered for Giant Pear
6. Over 100,000 sets of pearls given away
7. U.S. Clock Loses 1 Second in 20 Million Years
8. Chemist shocks Diamond Trade
9. The curse of the perfect gift

www.stauer.com





--------------------------------------------------------------------------------


So Bisiach brought the patient’s left hand into his right visual

field and said, “Whose hand is this?”

And the patient said, “Yours.”

Bisiach said, “I can’t have three hands.”

And the patient very calmly said, “Doc, it stands to reason, if you’ve got three arms, you have to have three hands.” That case is evidence that the brain is not a machine for logic but in fact a construction that does pattern recognition. And it does it by filling in, in ambiguous situations.

How are you pursuing the creation of conscious artifacts in your work at the Neurosciences Institute?
We construct what we call brain-based devices, or BBDs, which will be increasingly useful in understanding how the brain works and modeling the brain. They may also be the beginning of the design of truly intelligent machines.
What exactly is a brain-based device?
It looks like maybe a robot, R2-D2 almost. But it isn’t a robot, because it’s not run by an artificial intelligence [AI] program of logic. It’s run by an artificial brain modeled on the vertebrate or mammalian brain. Where it differs from a real brain, aside from being simulated in a computer, is in the number of neurons. Compared with, let’s say, 30 billion neurons and a million billion connections in the human cortex alone, the most complex brain-based devices presently have less than a million neurons and maybe up to 10 million or so synapses, the space across which nerve impulses pass from one neuron to another.

Our brain-based device learned to pick up a ball and kick it back to a human colleague. It did not just execute algorithms.What is interesting about BBDs is that they are embedded in and sample the real world. They have something that is equivalent to an eye: a camera. We give them microphones for the equivalent of ears. We have something that matches conductance for taste. These devices send inputs into the brain as if they were your tongue, your eyes, your ears. Our BBD called Darwin 7 can actually undergo conditioning. It can learn to pick up and “taste” blocks, which have patterns that can be identified as good-tasting or bad-tasting. It will stay away from the bad-tasting blocks, which have images of blobs instead of stripes on them —rather than pick them up and taste them. It learns to do that all on its own.

Why is this kind of machine better than a robot controlled by traditional artificial intelligence software?
An artificial intelligence program is algorithmic: You write a series of instructions that are based on conditionals, and you anticipate what the problems might be. AI robot soccer players make mistakes because you can’t possibly anticipate every possible scenario on a field. Instead of writing algorithms, we have our BBDs play sample games and learn, just the way you train your dog to do tricks.

At the invitation of the Defense Advanced Research Projects Agency, we incorporated a brain of the kind that we were just talking about into a Segway transporter. And we played a match of soccer against Carnegie Mellon University, which worked with an AI-based Segway. We won five games out of five. That’s because our device learned to pick up a ball and kick it back to a human colleague. It learned the colors of its teammates. It did not just execute algorithms.

It’s hard to comprehend what you are doing. What is the equivalent of a neuron in your brain-based device?
A biological neuron has a complex shape with a set of diverging branches, called dendrites, coming from one part of the center of the cell, and a very long single process called an axon. When you stimulate a neuron, ions like sodium and potassium and chloride flow back and forth, causing what’s called an action potential to travel down the neuron, through the axon, to a synapse. At the synapse, the neuron releases neurotransmitters that flow into another, postsynaptic neuron, which then fires too. In a BBD, we use a computer to simulate these properties, emulating everything that a real neuron does in a series of descriptions from a computer. We have a set of simple equations that describe neuron firing so well that even an expert can’t tell the difference between our simulation spikes and the real thing.

All these simulations and equations sound a lot like the artificial intelligence ideas that haven’t been very successful so far. How does your concept for a conscious artifact differ?
The brain can be simulated on a computer, but when you interface a BBD with the real world, it has the same old problem: The input is ambiguous and complex. What is the best way for the BBD to respond? Neural Darwinism explains how to solve the problem. On our computers we can trace all of the simulated neuronal connections during anything the BBD does. Every 200 milliseconds after the behavior, we ask: What was firing? What was connected? Using mathematical techniques we can actually see the whole thing converge to an output. Of course we are not working with a real brain, but it’s a hint as to what we might need to do to understand real brains.

When are we going to see the first conscious artifact emerge from your laboratory?
Eugene Izhikevitch [a mathematician at the Neurosciences Institute] and I have made a model with a million simulated neurons and almost half a billion synapses, all connected through neuronal anatomy equivalent to that of a cat brain. What we find, to our delight, is that it has intrinsic activity. Up until now our BBDs had activity only when they confronted the world, when they saw input signals. In between signals, they went dark. But this damn thing now fires on its own continually. The second thing is, it has beta waves and gamma waves just like the regular cortex—what you would see if you did an electroencephalogram. Third of all, it has a rest state. That is, when you don’t stimulate it, the whole population of neurons stray back and forth, as has been described by scientists in human beings who aren’t thinking of anything.

In other words, our device has some lovely properties that are necessary to the idea of a conscious artifact. It has that property of indwelling activity. So the brain is already speaking to itself. That’s a very important concept for consciousness.

« Previous Page 1 2 [3]
Related Articles
Discover Interview Roger Penrose Says Physics Is Wrong, From String Theory to Quantum Mechanics
One of the greatest thinkers in physics says the human brain—and the universe itself—must function according to some theory we haven't yet discovered. October 06, 2009

Discover Interview Thanks, Evolution, For Making the Great Building Material Called DNA
Electronic computers are great at what they do. But to accomplish really complicated physical tasks—like building an insect—Erik Winfree says you have to grow them from DNA. August 11, 2009

Discover Interview The Man Who Found Quarks and Made Sense of the Universe
Murray Gell-Mann had a smash success with particles, notorious dustups with Feynman, and a missed opportunity with Einstein. March 17, 2009

Discover Interview DNA Agrees With All the Other Science: Darwin Was Right
Molecular biologist Sean Carroll shows how evolution happens, one snippet of DNA at a time February 19, 2009

Discover Interview Why Did Western Drs. Promote Tobacco While the Nazis Fought Cancer?
Robert Proctor looks at the way knowledge advances—and sometimes takes great leaps backwards. January 08, 2009
Latest News Blogs Most Popular
The Bizarre and Brilliant World of Knitted Science
How Autistic Artists See the World
Eye Color Explained
Each Grain of Sand a Tiny Work of Art
The Brain: What Is the Speed of Thought?
#91: The Strange Ancient Process That Made Earth's Oxygen
#93: Re-Analyzing One of the Greatest Brains in History
The Brain: Humanity's Other Basic Instinct: Math
#92: Nowhere to Hide From the Buzz of Civilization
#95: Hidden Caribou-Hunting Civilization Found Under Lake Huron
Video for Owning the Weather Panel in Copenhagen
Easy-reading chiropractic libel for young readers
Create your own tour of the Universe!
Geek culture
Republicans Thrash Climate Scientists in the Court of Public Opinion
Terroreidolia
New Especially Bad Heroin Can Give You an Overdose—or Anthrax
From Tibet to Infinity and back again
Ocean Volcano Eruption!!
Furious Fanboys Plan “Operation Stranglehold” to Take Down AT&T
Lab-Created Platelets Slow Bleeding in Rodents
Physicists Find Hints of Dark Matter But No Clear Discovery
The Mutations That Kill: 1st Cancer Genomes Sequenced
Copenhagen Roundup: Protests, Walkouts, and the Money Wars
A Hack of the Drones: Insurgents Spy on Spy Planes With $26 Software
Study: Like Earthquakes & Financial Markets, Terrorist Attacks Follow Laws ...
New Super-Earth: Hot, Watery, and Nearby
Injured Vet Receives Transplanted Pancreas Grown From a Few Cells
Scientist Smackdown: Are Unnecessary CT Scans Killing People?
Gravity Satellites Show a Huge Groundwater Loss in California



Name

Address

Address

City State Zip Code

Email Address


(U.S. orders only) DISCOVER is published monthly except two double issues which count as two each. Savings based on a $29.95 annual subscription rate.