понедельник, 7 марта 2011 г.

АНТИМАТЕРИЯ МОЖЕТ ОКАЗАТЬСЯ "АНТИ" ВО ВСЕХ СМЫСЛАХ

С.М.КОМАРОВ кандидат физико-математических наук






Многолетние усилия одной из международных групп (коллабораций) ученых, работающих в Европейском центре ядерных исследований (ЦЕРНа) увенчались успехом: им удалось получить холодные атомы антиводорода и сохранить их в ловушке в течение 130 миллисекунд. Это долго: до сих пор атомы антиводорода (а их получают с 1995 года, см. «Химию и жизнь», 2003, № 1) жили гораздо меньше. Когда ученые отладят методику и накопят много атомов антиводорода, они смогут провести тонкие эксперименты, связанные с фундаментальными свойствами нашей Вселенной. Возглавляет эту коллаборацию Джеффри Хангст из датского Орхуского университета.

«Да, Джеффри и его коллеги по эксперименту ALPHA достигли большого успеха, — поясняет член-корреспондент РАН Игорь Николаевич Мешков (Объединенный институт ядерных исследований, Дубна). — Получить холодные атомы антиводорода и удержать их в ловушке в течение длительного времени — огромный шаг вперед. Ведь атомы — совсем не то, что ядра, которые успешно получают вот уже более полувека. Они нейтральны, у них вокруг ядра (у антиводорода это антипротон) вращаются позитроны. Значит, можно исследовать свойства антивещества — химические, физические. Основное направление — изучение спектра антиводорода. Его нужно измерить с большой точностью, чтобы выяснить, существуют ли какие-то различия между антиводородом и водородом. Для такого исследования требуется получить не менее тысячи атомов, причем они должны быть очень холодными, то есть практически не двигаться. Иначе из-за эффекта Доплера в измерения будет вкрадываться неопределенность, которая способна скрыть искомый эффект. Джеффри и его коллеги хотят еще изучить и возможность антигравитации антивещества, но сегодня такой эксперимент на грани технических возможностей.

К сожалению, пока что хорошо охладить атомы антиводорода, а речь идет о температурах в доли кельвина, не удается. Дело в том, что основной метод, применяемый для получения сверххолодных атомов — использование лазерного излучения — с антиводородом не работает. Причина банальна: этот эффект основан на поглощении атомом света лазера, а для антиводорода нужны кванты слишком большой энергии. Для эффективного торможения его атома требуется ультрафиолетовый лазер, а таких лазеров достаточной мощности нет. Однако это технические трудности, которые конечно же будут так или иначе преодолены. Кстати, на водороде подобные эксперименты группа Т.В.Хэнша из Института Макса Планка в Гаршинге провела с фантастической точностью: энергия атомарного перехода между основным, 1S, и первым возбужденным, 2S, уровнями измерена с относительной точностью 1,8х10-14.

Что касается возможности работы с антигелием-3, ядра которого тоже давно научились получать, то этот путь вряд ли приведет к успеху, ведь вероятность рождения таких ядер гораздо меньше, чем вероятность получения антипротонов. А для изготовления атомов их требуется еще охладить, соединить с позитронами, снова охладить — на каждом этапе значительная часть антивещества теряется. Пока получают считанные атомы холодного антиводорода, об атомах антигелия не стоит говорить».

Краткая история антивещества

А теперь расскажем подробнее об экспериментах с атомами антиводорода.

История антивещества начинается с 30-х годов XX века. Сначала Поль Дирак получил уравнения, из которых следовало: у каждой частицы должна быть античастица. Потом, в 1932 году, американский физик Карл Андерсон открыл первую стабильную античастицу, позитрон, в космических лучах (за что получил Нобелевскую премию 1936 года). Затем позитроны обнаружили и в продуктах распада радиоактивных элементов: если число протонов в ядре какого-то изотопа оказывается слишком большим, то один из них превращается в нейтрон, а электрический заряд ядра снимается за счет вылета позитрона. Сейчас радиоактивные элементы и служат источниками позитронов.


Следующую стабильную античастицу пришлось ждать долго. Лишь в 1955 году, после того, как в Калифорнийском университете построили беватрон — ускоритель, способный разгонять протоны до 6,2 ГэВ, были получены антипротоны. Схема этого, а также всех последующих экспериментов с античастицами, такова: разогнанные протоны попадают в мишень и порождают ливень вторичных частиц. В сущности, они берутся «из ничего» — это воплотившаяся в вещество энергия протона (вспомним эйнштейновское Е=mc2). Поскольку частицы рождаются парами «частица-античастица», среди них были и протоны с антипротонами. Спустя год были открыты антинейтроны, а в 1965 году группа Леона Ледермана на Брукхэйвенском ускорителе получила антидейтроны. Для этого исходные протоны потребовалось разогнать уже до 30 ГэВ. Следующий успех выпал на долю советским физикам под руководством члена-корреспондента АН СССРЮ.Д.Прокошкина: в 1970 году на ускорителе в Протвино они зарегистрировали ядра антигелия-3, а спустя три года там же получили и ядра радиоактивного антитрития (при распаде он дает тот же самый антигелий-3). На этом период «бури и натиска» в деле создания антиматерии завершился: мечты продвинуться дальше и получить следующее ядро, антилегий-4, не сбылись. Всю эту историю по горячим следам описал В.В.Станцов своей знаменитой серии статей «Элемент №...» («Химия и жизнь», 1975, № 1).

Материя-антиматерия: различие или сходство?

Фабрики по производству антипротонов работали, античастицы стали использовать в медицине (позитронная томография, протонная хирургия), и в конце концов уровень ускорительной техники оказался достаточным для того, чтобы приступить к изготовлению настоящего антивещества — то есть присоединить к антиядру антиэлектроны и посмотреть, что будет. Посмотреть же интересно, во-первых, на спектры. Если окажется, что антиводород хоть слегка, но не похож на водород, то завеса тайны над проблемой дефицита антиматерии во Вселенной приоткроется. А во-вторых, антиматерия может оказаться «анти» во всех смыслах, то есть обладать еще и свойством антигравитации, отрицательной массой.

Над этой отрицательной массой сломано немало копий. Дело в том, что формально подставив отрицательную массу в законы Ньютона, можно получить парадоксальный результат. Закон тяготения ожидаемо превратится в закон отталкивания антимассы от массы, а вот с законами механики будет твориться нечто за пределами здравого смысла: сила, отталкивающая антимассу, станет ее, наоборот, притягивать. Но этот парадокс можно разрешить. Законы Ньютона держатся на принципе эквивалентности гравитационной массы (которая стоит в законе тяготения) и инерционной, присутствующей в законах механики. Однако этот принцип не считается доказанным — просто не найдено свидетельств его несправедливости. Гравитация же отличается от механики, поскольку, согласно общей теории относительности Эйнштейн, ее суть — деформация пространства-времени. В соответствии с принципами хорошо разработанной в физике твердого тела теории упругости, частицы, создающие деформации одного знака (в простейшем случае — всестороннего сжатия или расширения), притягиваются, а разного — отталкиваются. Свет, проходя рядом со звездой, отклоняется к ней, значит, масса создает деформацию сжатия. Тогда если антимасса создает деформацию растяжения (свет, проходя рядом с антизвездой, отклонится от нее), то антигравитация будет иметь место, а на механике это никак не скажется, ведь инерция с деформацией пространства никак не связана. Антигравитация антиматерии способна объяснить ее исчезновение в видимой части Вселенной — гравитационные силы попросту отпихнули ее подальше от материи. Очевидно, что в таком случае заметить знак массы у античастиц невозможно до тех пор, пока не измерен знак их взаимодействия с полем тяготения Земли. А это можно сделать только с нейтральными атомами — гораздо более мощные электрические и магнитные поля, действующие на заряженные частицы, скроют слабое влияние гравитации.

Воодушевленные примерно такими соображениями, физики в девяностых годах XX века приступили к созданию антивещества. Первый успех пришел к ученым из ЦЕРНа — в 1995 году они получили первые девять атомов антиводорода. В 1997 году их американские коллеги из чикагской Лаборатории Энрико Ферми (Фермилаб) получили уже сотню антиатомов. Впрочем, в обоих экспериментах эти атомы летели со скоростью, близкой к скорости света, и проводить с ними тонкие эксперименты было невозможно. Тем временем в ЦЕРНе сломали старый ускоритель, и возникла пауза. Лишь в 2002 году опыты возобновились и были получены первые медленные атомы антиводорода. При этом производительность антиводородной фабрики выросла во много раз — до нескольких тысяч антиатомов в минуту. Однако использовать эти антиатомы для исследования тоже было нельзя: они очень быстро сталкивались со стенками ускорителя и аннигилировали. Нужна была хорошая ловушка, способная удержать антиатомы «подвешенными» в вакууме. И здесь есть серьезные трудности.

Ловушка для антиатомов

Вот как выглядит схема получения холодных антиатомов в ЦЕРНе. После того как быстрые протоны врезаются в мишень, они порождают множество частиц, в том числе протоны и антипротоны. С помощью магнитного поля отрицательно заряженные антипротоны переводят в Антипротонный замедлитель, — синхротрон, где они довольно долго вращаются в спадающем во времени магнитном поле и тормозятся в электрическом поле до энергии в 5,3 МэВ. При этом антипротоны приходится охлаждать, используя специальные методы. Первый из них - электронное охлаждение, был предложен и разработан Г.И.Будкером с учениками в Новосибирском институте ядерной физики в 60—70-х годах. Второй метод — стохастического охлаждения, предложенный несколько позднее будущим нобелевским лауреатом С. ван-дер-Меером, был создан в ЦЕРНе. Сегодня оба метода — признанное орудие формирования плотных пучков в ускорителях.

Из замедлителя каждые две минуты вылетает порция в 30 млн. антипротонов. Увы, они еще слишком горячи — такая энергия соответствует скорости в 10% от скорости света и температуре в миллионы градусов. Чтобы радикально затормозить антипротоны, их пропускают сквозь алюминиевую фольгу толщиной в треть миллиметра. При столкновении с атомами алюминия половина антипротонов аннигилирует, а другая половина пролетает насквозь, расходуя часть своей энергии на нагрев фольги. Примерно сто тысяч из них сбрасывает энергию в тысячи раз, до 0,2% от скорости света. Такие антипротоны уже можно поймать в электромагнитную ловушку Пеннинга — Малмберга. Как и все прочие подобные ловушки, она построена из катушек с электрическим током и электродов: созданные ими магнитные и электрические поля заворачивают заряженные частицы и не дают им лететь дальше. Очевидно, что энергия частиц должна быть достаточно маленькой, иначе полям ловушки с ними не справиться. Эта ловушка заполнена холодными электронами: сталкиваясь с ними, антипротоны охлаждаются дальше. После отделения электронов в ловушке остается несколько тысяч антипротонов с температурой 300—400 К.

А в соседней аналогичной ловушке накапливаются и охлаждаются позитроны, которые получаются при распаде натрия-22. Их температура оказывается 60—80 К. Затем стенку из полей между облаками обоих типов частиц снимают, эти облака сливаются, и начинается образование атомов антиводорода: антипротон захватывает позитрон, и тот, излучая энергию, постепенно достигает нижнего энергетического уровня, занимая основной уровень 1S в атоме антиводорода. Тут и возникает главная проблема охотников за антиматерией: атом-то становится электрически нейтральным и легко проходит сквозь электромагнитные стенки ловушки для заряженных частиц. Значит, нужно ставить снаружи еще одну ловушку, для нейтральных атомов. Собственно, ее созданием и занимались ученые после первых успехов 2002—2005 годов.

Вообще-то ловушки для нейтральных частиц стали известны не вчера. Принцип такой ловушки для нейтрона был предложен В.В.Владимирским еще в 1960 году. В ней магнитное поле сформировано так, что оно возрастает во всех направлениях от центра ловушки - так называемый «minimum В» (латинской буквой В в физике принято обозначать магнитное поле). Вскоре участники термоядерного проекта из Института атомной энергии им. И.В.Курчатова (ныне Курчатовский институт) во главе с М.С.Иоффе предложили конструкцию такой ловушки.


Не пойманные в ловушку атомы антиводорода аннигилируют на стенках камеры (фото: CERN)

Это цилиндр, на краях которого расположены две запирающие катушки с током, а вдоль его стенки проложены четыре проводника — «палки Иоффе», причем в соседних проводниках ток течет в противоположных направлениях. В центре цилиндра возникает минимум магнитного поля, а к стенкам вдоль оси оно нарастает. Хотя эту ловушку придумали для удержания плазмы, она подошла и для нейтральных атомов: у любого из них в магнитном поле возникает магнитный момент. В зависимости от его ориентации атом будет двигаться либо туда, где поле сильнее, либо в обратную сторону.

В 1983 году Дэвид Притчард из Массачусетского технологического университета предложил применить ловушку Иоффе для удерживания холодных атомов. Притчард известен не только своим участием в комиссии по изучению случаев похищения людей инопланетянами: его ученики Вольфганг Кеттерле и Эрик Корнелл получили Нобелевскую премию 2001 года по физике за работу со сверххолодными атомами и создание из них конденсата Бозе — Эйнштейна. Поэтому вопрос о том, как подвесить такие атомы в пространстве и не дать им соприкоснуться с горячей стенкой ловушки, был для него совсем не праздным. Для антивещества задача принципиально не отличается: ему тоже нельзя соприкасаться со стенкой, иначе произойдет аннигиляция.

Атомы антиводорода и можно собирать в ловушке Иоффе — Притчарда, где они повиснут, не касаясь стенок камеры. Главное условие — энергия атомов должна быть очень мала. Магнит с силой в 1 Тл удержит атомы водорода с температурой не выше 0,67 К. Поскольку сила самых мощных современных электромагнитов составляет несколько тесла, следует ожидать, что в такую ловушку попадут атомы антиводорода с температурой в 2—4 К. Магниты, которые сейчас применяют в экспериментах ЦЕРНа, удерживают атомы не горячее 1 К. Не исключено, что причина здесь не в цене более мощных магнитов, а в том, что ловушка Иоффе — Притчарда сильно портит конфигурацию полей в расположенной внутри нее ловушке для заряженных частиц.

При средней температуре получающихся антиатомов под двести Кельвинов очевидно, что лишь малая их толика сможет задержаться в ловушке, остальные же сразу после образования разлетятся и погибнут, столкнувшись со стенкой. И действительно, после объединения облаков позитронов и антипротонов на стенках ловушки фиксируют две-три тысячи актов аннигиляции атомов антиводорода. После окончания этой массовой аннигиляции можно было посмотреть, что же осталось в ловушке. Для этого ее открыли спустя 130 миллисекунд после образования антиатомов. Собравшийся в ней антиводород вылетел и, достигнув стенки, тоже аннигилировал. С высокой надежностью, отбросив все сомнительные сигналы (а они могли идти и от космических лучей, и от случайно сохранившихся антипротонов), участники эксперимента насчитали 38 случаев аннигиляции от пойманных в ловушку атомов. Немного, но начало положено.

Источник: "Химия и жизнь"

четверг, 10 февраля 2011 г.

БОМБА ДЛЯ ВСЕЛЕННОЙ

Светлана КУЗИНА




Ученые из Центра астрофизических исследований в лаборатории имени ферми (Fermilab) сегодня работают над созданием устройства «голометр» (Holometer), с помощью которого они смогут опровергнуть все, что человечество сейчас знает о Вселенной.

НАШ МИР-ПРОЕКЦИЯ

С помощью устройства «Голометр» специалисты надеются доказать или опровергнуть безумное предположение о том, что трехмерной Вселенной в таком виде, как мы ее знаем, просто не существует, будучи ничем иным, как своеобразной голограммой. Другими словами, окружающая реальность — иллюзия и не более того.

...Теория о том, что Вселенная является голограммой, основывается на появившемся не так давно предположении, что пространство и время во Вселенной не являются непрерывными. Они якобы состоят из отдельных частей, точек — как будто из пикселей, из-за чего нельзя увеличивать «масштаб изображения» Вселенной бесконечно, проникая все глубже и глубже в суть вещей. По достижению какого-то значения масштаба Вселенная получается чем-то вроде цифрового изображения очень плохого качества — нечеткой, размытой. Представьте обычную фотографию из журнала. Она выглядит как непрерывное изображение, но, начиная с определенного уровня увеличения, рассыпается на точки, составляющие единое целое. И также наш мир якобы собран из микроскопических точек в единую красивую, даже выпуклую картинку.

Поразительная теория! И до недавнего времени к ней относились несерьезно. Только последние исследования черных дыр убедили большинство исследователей, что в «голографической» теории что-то есть. Дело в том, что обнаруженное астрономами постепенное испарение черных дыр с ходом времени приводило к информационному парадоксу — вся содержащаяся информация о внутренностях дыры в таком случае исчезала бы. А это противоречит принципу сохранения информации. Но лауреат Нобелевской премии по физике Герард т'Хоофт, опираясь на труды профессора Иерусалимского университета Якоба Бекенштейна, доказал, что вся информация, заключенная в трехмерном объекте, может быть сохранена в двумерных границах, остающихся после его уничтожения, — точно также, как изображение трехмерного объекта можно поместить в двумерную голограмму.

У УЧЕНОГО КАК-ТО РАЗ СЛУЧИЛСЯ ФАНТАЗМ

Впервые «безумная» идея о вселенской иллюзорности родилась у физика Лондонского университета Дэвида Бома, соратника Альберта Эйнштейна, в середине XX века. Согласно его теории весь мир устроен примерно так же, как голограмма. Как любой сколь угодно малый участок голограммы содержит в себе все изображение трехмерного объекта, так и каждый существующий объект «вкладывается» в каждую из своих составных частей.

Из этого следует, что объективной реальности не существует, — сделал тогда ошеломляющее заключение профессор Бом. — Даже несмотря на ее очевидную плотность, Вселенная в своей основе — фантазм, гигантская, роскошно детализированная голограмма.

Напомним, что голограмма представляет собой трехмерную фотографию, сделанную с помощью лазера. Чтобы ее изготовить, прежде всего фотографируемый предмет должен быть освещен светом лазера. Тогда второй лазерный луч, складываясь с отраженным светом от предмета, дает интерференционную картину (чередование минимумов и максимумов лучей), которая может быть зафиксирована на пленке. Готовый снимок выглядит как бессмысленное переслаивание светлых и темных линий. Hо стоит осветить снимок другим лазерным лучом, как тотчас появляется трехмерное изображение исходного предмета.

Трехмерность не единственное замечательное свойство, присущее голограмме. Если голограмму с изображением, например, дерева разрезать пополам и осветить лазером, каждая половина будет содержать целое изображение того же самого дерева точно такого же размера. Если же продолжать разрезать голограмму на более мелкие кусочки, на каждом из них мы вновь обнаружим изображение всего объекта в целом. В отличие от обычной фотографии, каждый участок голограммы содержит информацию о всем предмете, но с пропорционально соответствующим уменьшением четкости.

— Принцип голограммы «все в каждой части» позволяет нам совершенно по-новому подойти к вопросу организованности и упорядоченности, — объяснял профессор Бом. — На протяжении почти всей своей истории западная наука развивалась с идеей о том, что лучший способ понять физический феномен, будь то лягушка или атом, — это рассечь его и изучить составные части. Голограмма показала нам, что некоторые вещи во Вселенной не поддаются исследованию таким образом. Если мы будем рассекать что-либо, устроенное голографически, мы не получим частей, из которых оно состоит, а получим то же самое, но поменьше точностью.

И ТУТ ПОЯВИЛСЯ ВСЁ ОБЪЯСНЯЮЩИЙ АСПЕКТ

К «безумной» идее Бома подтолкнул еще и нашумевший в свое время эксперимент с элементарными частицами. Физик из Парижского университета Алан Аспект в 1982 году обнаружил, что в определенных условиях электроны способны мгновенно сообщаться друг с другом независимо от расстояния между ними. Hе имеет значения, десять миллиметров между ними или десять миллиардов километров. Каким-то образом каждая частица всегда знает, что делает другая. Смущала только одна проблема этого открытия: оно нарушает постулат Эйнштейна о предельной скорости распространения взаимодействия, равной скорости света. Поскольку путешествие быстрее скорости света равносильно преодолению временного барьера, эта пугающая перспектива заставила физиков сильно засомневаться в работах Аспекта.

Но Бом сумел найти объяснение. По его словам, элементарные частицы взаимодействуют на любом расстоянии не потому, что они обмениваются некими таинственными сигналами между собой, а потому, что их разделенность иллюзорна. Он пояснял, что на каком-то более глубоком уровне реальности такие частицы являются не отдельными объектами, а фактически расширениями чего-то более фундаментального.

«Свою замысловатую теорию профессор для лучшего уяснения иллюстрировал следующим примером, — писал автор книги «Голографическая Вселенная» Майкл Талбот. — Представьте себе аквариум с рыбой. Вообразите также, что вы не можете видеть аквариум непосредственно, а можете наблюдать только два телеэкрана, которые передают изображения от камер, расположенных одна спереди, другая сбоку аквариума. Глядя на экраны, вы можете заключить, что рыбы на каждом из экранов — отдельные объекты. Поскольку камеры передают изображения под разными углами, рыбы выглядят по-разному. Hо, продолжая наблюдение, через некоторое время вы обнаружите, что между двумя рыбами на разных экранах существует взаимосвязь. Когда одна рыба поворачивает, другая также меняет направление движения, немного по-другому, но всегда соответственно первой. Когда одну рыбу вы видите анфас, другую непременно в профиль. Если вы не владеете полной картиной ситуации, вы скорее заключите, что рыбы должны как-то моментально общаться друг с другом, что это не факт случайного совпадения».

— Явное сверхсветовое взаимодействие между частицами говорит нам, что существует более глубокий уровень реальности, скрытый от нас, — объяснял Бом феномен опытов Аспекта, — более высокой размерности, чем наша, как в аналогии с аквариумом. Раздельными мы видим эти частицы только потому, что мы видим лишь часть действительности. А частицы — не отдельные «части», но грани более глубокого единства, которое в конечном итоге так же голографично и невидимо, как упоминавшееся выше дерево. И поскольку все в физической реальности состоит из этих «фантомов», наблюдаемая нами Вселенная сама по себе есть проекция, голограмма.

Что еще может нести в себе голограмма — пока не известно. Предположим, например, что она — это матрица, дающая начало всему в мире, как минимум, в ней есть все элементарные частицы, которые принимали или будут когда-то принимать любую возможную форму материи и энергии — от снежинок до квазаров, от голубых китов до гамма-лучей. Это как бы вселенский супермаркет, в котором есть все.

Хотя Бом и признавал, что у нас нет способа узнать, что еще таит в себе голограмма, он брал на себя смелость утверждать, что у нас нет причин, чтобы предположить, что в ней больше ничего нет. Другими словами, возможно, голографический уровень мира — просто одна из ступеней бесконечной эволюции.

ВРЕМЯ СОСТОИТ ИЗ ГРАНУЛ

Но можно ли «пощупать» эту иллюзорность инструментами? Оказалось, да. Уже несколько лет в Германии на гравитационном телескопе, сооруженном в Ганновере (Германия), GEO600 ведутся исследования по обнаружению гравитационных волн, колебаний пространства-времени, которые создают сверхмассивные космические объекты. Ни одной волны за эти годы, впрочем, найти не удалось. Одна из причин — странные шумы в диапазоне от 300 до 1500 Гц, которые на протяжении длительного времени фиксирует детектор. Они очень мешают его работе. Исследователи тщетно искали источник шума, пока с ними случайно не связался директор Центра астрофизических исследований в лаборатории имени Ферми Крейг Хоган. Он заявил, что понял, в чем дело. По его словам, из голографического принципа следует, что пространство-время не является непрерывной линией и, скорее всего, представляет собой совокупность микрозон, зерен, своего рода квантов пространства-времени.

— А точность аппаратуры GEO600 сегодня достаточна для того, чтобы зафиксировать колебания вакуума, происходящие на границах квантов пространства, тех самых зерен, из которых, если голографический принцип верен, состоит Вселенная, — объяснил профессор Хоган.

По его словам, GEO600 как раз и наткнулся на фундаментальное ограничение пространства-времени — то самое «зерно», вроде зернистости журнальной фотографии. И воспринимал это препятствие как «шум».

И Крейг Хоган вслед за Бомом убежденно повторяет:

— Если результаты GEO600 соответствуют моим ожиданиям, то все мы действительно живем в огромной голограмме вселенских масштабов.

Показания детектора пока в точности соответствуют его вычислениям, и, кажется, научный мир стоит на пороге грандиозного открытия. Специалисты напоминают, что однажды посторонние шумы, выводившие из себя исследователей в Bell Laboratory — крупном исследовательском центре в области телекоммуникаций, электронных и компьютерных систем — в ходе экспериментов 1964 года, уже стали предвестником глобальной перемены научной парадигмы: так было обнаружено реликтовое излучение, доказавшее гипотезу о Большом взрыве.

А доказательства голографичности Вселенной ученые ожидают, когда заработает прибор «Голометр» на полную мощь. Ученые надеются, что он увеличит количество практических данных и знаний этого необыкновенного открытия, относящегося пока все же из области теоретической физики. Детектор устроен так: светят лазером через расщепитель луча, оттуда два луча проходят через два перпендикулярных тела, отражаются, возвращаются назад, сливаются вместе и создают интерференционную картину, где любое искажение сообщает об изменении отношения длин тел, так как гравитационная волна проходит через тела и сжимает или растягивает пространство неодинаково в разных направлениях.

— «Голометр» позволит увеличить масштаб пространства-времени и увидеть, подтвердятся ли предположения о дробной структуре Вселенной, основанные чисто на математических выводах, — предполагает профессор Хоган.

Первые данные, полученные с помощью нового аппарата, начнут поступать в середине этого года.

МНЕНИЕ ОПТИМИСТА

Психолог Джек Корнфилд, рассказывая о своей первой встрече с покойным ныне учителем тибетского буддизма Калу Ринпоче, вспоминает, что между ними состоялся такой диалог:

— Не могли бы вы мне изложить в нескольких фразах самую суть буддийских учений?

— Я бы мог это сделать, но вы не поверите мне, и чтоб понять, о чем я говорю, вам потребуется много лет.

— Все равно, объясните, пожалуйста, так хочется знать. Ответ Ринпоче был предельно краток:

— Вас реально не существует.

МНЕНИЕ ПЕССИМИСТА

Президент Лондонского королевского общества, космолог и астрофизик Мартин Рис: «Рождение Вселенной для нас навсегда останется загадкой»

— Нам не понять законы мироздания. И не узнать никогда, как появилась Вселенная и что ее ждет. Гипотезы о Большом взрыве, якобы породившем окружающий нас мир, или о том, что параллельно с нашей Вселенной может существовать множество других, или о голографичности мира — так и останутся недоказанными предположениями. Несомненно, объяснения есть всему, но нет таких гениев, которые смогли бы их понять. Человеческий разум ограничен. И он достиг своего предела. Мы даже сегодня столь же далеки от понимания, к примеру, микроструктуры вакуума, сколько и рыбы в аквариуме, которым абсолютно невдомек, как устроена среда, в которой они живут. У меня, например, есть основания подозревать, что у пространства — ячеистая структура. И каждая его ячейка в триллионы триллионов раз меньше атома. Но доказать или опровергнуть это, или понять, как такая конструкция работает, мы не можем. Задача слишком сложная, запредельная для человеческого разума.

Источник: "Российский космос"
Оцените этот текст

1
2
3
4
5


11:00 09-02-11
вернуться на главную




Реклама:



комментарии к статье (6)

зарегистрированные пользователи могут получать по почте комментарии к этой статье: подписаться отписаться
Добавить комментарий:
Имя:
Текст:
Введите число на картинке:











НЕОБЫЧНЫЕ МЕСТА НА ПЛАНЕТЕ ЗЕМЛЯ ГЛАЗАМИ ЛЕТЧИКА-КОСМОНАВТА ФЁДОРА ЮРЧИХИНА

Еще до своего полета на МКС Герой России летчик‑космонавт Фёдор Юрчихин обещал представить свои новые фотоработы на выставке "Наш дом — Земля II". При этом он признавался, что так и не определил концепцию и обещал подумать о ней на борту станции — мол, жизнь подскажет. Может, нечего и мудрить, просто бери фотоаппарат и щелкай все подряд, ведь любые виды Земли интересны? О том, как он справился с этой, как оказалось, совсем не легкой задачей, рассказал сам космонавт

15:00 07-02-11






ЕСТЬ ЛИ ЖИЗНЬ РЯДОМ С МАРСОМ
Россия успешно осваивает ближний космос и возвращается в дальний
• Пётр ОБРАЗЦОВ

Недавно космический аппарат Европейского космического агентства (ЕКА) сфотографировал марсианский спутник Фобос с близкого расстояния. Казалось бы, это - успех европейских коллег. Но самую сложную часть экспедиции - запуск спутника - осуществила с Байконура российская ракета "Союз-ФГ". Да и фотографирование поверхности Фобоса послужит российской космонавтике - в ноябре Роскосмос планирует сложнейшую операцию в космосе. Похоже, после некоторого перерыва наше космическое ведомство собирается вернуть себе звание одного из основных исследователей Вселенной

12:00 04-02-11 (комментариев: 1)






СВЯЗЬ С ПОТЕРЯННЫМ РОССИЙСКИМ СПУТНИКОМ ВОЕННОГО НАЗНАЧЕНИЯ ВОССТАНОВЛЕНА

• Пётр ОБРАЗЦОВ

Потеря связи со спутниками или невывод их на орбиту - рутинное событие в мировой космонавтике. За 50 с лишним лет, прошедших после запуска первого советского спутника, было потеряно не менее сотни самых различных космических аппаратов. Например, неудачи преследовали нашу марсианскую программу. "Марс-1" не вышел на межпланетную траекторию, следующие два аппарата погибли при взрыве ракет "Протон", спускаемый аппарат с "Марса-2" разбился на поверхности планеты, с "Марсом-3" была потеряна связь

13:51 03-02-11






РОССИЯ В 2011 ГОДУ ЗАПУСТИТ КОСМИЧЕСКИЙ АППАРАТ ДЛЯ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ

• Пётр ОБРАЗЦОВ

Глава Роскосмоса Анатолий Перминов заявил, что в 2011 году Россия осуществит запуск космического аппарата "Ресурс-П", предназначенного для ДЗЗ. При этом снимки объектов на поверхности Земли будут иметь рекордное для нашей космонавтики разрешение 40-60 сантиметров и можно будет "рассмотреть" номера автомобилей в реальном времени. Анатолий Перминов подчеркнул, что сейчас спутники с системами такого разрешения имеются только у США, Великобритании и Израиля. Срок активной работы "Ресурса-П" будет увеличен до пяти лет

13:16 03-02-11






В ПОДНЕБЕСНОЙ РЕАЛИЗУЮТ МАСШТАБНУЮ КОСМИЧЕСКУЮ ПРОГРАММУ

• Иван АНТОНОВ, Пекин

Китай отложил на вторую половину 2011 года запуск орбитального космического модуля "Тяньгун-1" ("Небесный дворец-1"). На нем будут отрабатываться ключевые технологии для создания национальной космической станции. Аппарат собирались вывести на орбиту в начале года. О причинах корректировки программы не сообщается. Тема космоса в Китае - одна из самых закрытых. О запусках становится известно, в лучшем случае, за один-два дня до их проведения, если не после

11:00 01-02-11 (комментариев: 1)






НОВЫЕ МИРЫ, НОВЫЕ ГОРИЗОНТЫ: ПРИОРИТЕТНЫЕ НАПРАВЛЕНИЯ АСТРОНОМИЧЕСКИХ ИССЛЕДОВАНИЙ

• А.А.ГУРЬЯНОВ

Судя по успехам американской космонавтики (корабли США были на Луне, Марсе, облетали Меркурий, Венеру, Юпитер с Сатурном и их спутниками, садились на астероид, врезались в комету и даже достигли границ Солнечной системы), эти планы действительно способствуют развитию науки. План обсуждают в несколько этапов: сначала несколько сот ведущих экспертов, затем научное сообщество. Очередной, уже шестой, такой план был подготовлен в конце 2010 года. Он подводит итоги развития астрономии и астрофизики от начала XXI века и указывает приоритетные направления астрономических исследований на 2012—2021 годы

13:00 27-01-11 (комментариев: 1)






ВЕСНОЙ К МКС ПОЛЕТИТ "СОЮЗ", НАЗВАННЫЙ В ЧЕСТЬ ЮРИЯ ГАГАРИНА

• Анастасия САВИНЫХ

Нынешний год объявлен Годом космонавтики в России. И это не случайно, ведь ровно пятьдесят лет назад Юрий Гагарин открыл человечеству дорогу к звездам. Юбилей будут отмечать 12 апреля, пока же кипит подготовительная работа. Обсудить план действий Владимир Путин, возглавляющий оргкомитет по подготовке праздничных мероприятий, приехал в подмосковный Королев, в Центр управления полетами (ЦУП)

11:51 12-01-11






NASA СОБИРАЕТ НЕВОЗВРАЩЕНЦЕВ

• Светлана КУЗИНА

Эдвин Олдрин уверен, что добровольцы, готовые расстаться с Землей, обязательно найдутся. Многие ученые уже сейчас согласны пойти на такую жертву ради науки. Хотя сам полет вряд ли состоится раньше 2030-2040 годов. В 30-летнем возрасте их отберут. Если люди не поменяют своего решения, то смогут стартовать через 5 лет после подготовки. А еще лет через 30, когда им исполнится 65 и пора будет выходить на пенсию, кто знает, может быть, мы и сможем вернуть их обратно. Если захотят…

14:00 20-12-10 (комментариев: 1)






РОССИЙСКИЕ КОСМОНАВТЫ ПРОВЕЛИ НАУЧНЫЕ ЭКСПЕРИМЕНТЫ ВНУТРИ МКС

• Пётр ОБРАЗЦОВ

Научные эксперименты на МКС проводятся для изучения поведения веществ и существ (включая человека) в условиях невесомости и воздействия космической радиации. Кроме того, изучаются необычные вещества и существа с целью их практического использования на Земле. Определение состава и очистка газовой среды на МКС относятся к первому типу экспериментов

14:14 15-12-10 (комментариев: 1)






ВИЖУ СУПЕРЗЕМЛЮ: НАДО ЛИ НАМ ВСТРЕЧАТЬСЯ С МЫСЛЯЩИМИ ТАРАКАНАМИ

• Пётр ОБРАЗЦОВ

Схожие с Землей планеты называют суперземлями. Они должны иметь диаметр не больше, чем три земных, и массу не более десяти земных. Ищут такие планеты следующим образом: внимательно наблюдают в телескоп с Земли или с орбитального космического телескопа "Хаббл" за звездой и подмечают момент, когда ее светимость уменьшается. Происходит это из-за того, что вращающаяся вокруг звезды и периодически проходящая мимо звездного диска планета немного затеняет звезду. Это тончайшие эксперименты, величайшее достижение астрономии за последние годы

16:47 10-12-10 (комментариев: 1)



Ссылки по теме:

Первичные молекулы в "темную эпоху"
Теория Большого взрыва таит много пародоксов
Астрономы заглянули в прошлое и будущее Вселенной
Астрономы вышли на след параллельных миров

суббота, 6 ноября 2010 г.

Будущее, назад!

Перепост:
http://turchin.livejournal.com/566591.html

turchin11/6/10 01:26 pm Бен Гёрцль, один из разработчиков ИИ на страницах трансгуманистиченского жeрнала H+ написал статью об предчувствии будущего. Это стало возможно, потому что удалось (судя по всему), поставить эксперимент, в котором получается статистически занчимый, хотя и небольшой результат. И довольно хитро убраны другие возможные объяснения. Кроме того, предложен физический механизм, объясняющий "ретроказуальную связь".

http://hplusmagazine.com/editors-blog/precognition-real-cornell-university-lab-releases-powerful-new-evidence-human-mind-can-?utm_source=twitterfeed&utm_medium=twitter&utm_campaign=Feed%3A+HPlusMagazine+%28h%2B+Magazine+Feed%29&utm_content=Twitter

Основная хитрость его эксперимента в том, что в отличие от прошлых экспериментов, где испытуемые угадывали цифры, или абстрактные значки. он применил угадывание фотографий с бурными сексуальными сценами либо со сценами насилия. Он предположил, что в ходе эволюции было важно предчувстоввать именно такие события. (Я сам как-то экспериментировал с угадывание фототографий и одна вызвала у меня просто вопль предчувствия: "Война!" - когда я открыл ее, это была фотка трупов из Беслана)

Вторая хитрость этого эксперимента в том, что применялось два разных генератора случайных чисел - один на основе квантового шума, а второй на основе математической таблицы. Это позволило отсеь другие объяснения , кроме предвидения будущего: а именно, удалённое восприятие и телекинез (воздействие на генератор случайных чисел)

основной недостаток в слабом эффекте среднеий уровень угадываний 53 процента.На каждый из 9 экспериментво приходится вероятность слйчайного совпадения результатов 1 процент. перемножение этих вероятностей даёт суммарную вероятность совпадения порядка 10**-18

Уже появились критики. Кто то не смог воспроизвести результат, как оно обычно и бывает в пси исследованиях, основная проблема которых не остуствие резульатов, а их невоспроиводимость.
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1699970

механизм предвидения может квантовый характер и расмотрен в статье других учёных, которые смогли подвтердить его экспериментально на опытах с микрозеркалам и лазерами.

http://discovermagazine.com/2010/apr/01-back-from-the-future/article_view?searchterm=Tollaksen&b_start:int=0

При этом ретроказуальная связь не приводит к парадоксам в духе "сел на машину времени и убил своего дедушку", поскольку носит вероятностный характер.

Далее мои мысли: В мозгу ретроказульначя связь может реализовываться через то, что нейрон "предчуствует" своё будущее состояние. То есть нейрон находится в метастабильном состоянии - сработать или нет, и его срабатывание в конкретный момент времени носит случайный характер

Fractal Cosmology

http://www3.amherst.edu/~rloldershaw

вторник, 28 сентября 2010 г.

"Физика – это привычка думать"
Интервью с физиком-теоретиком Дмитрием Дьяконовым. Часть 2Публикуем вторую часть интервью с нашим постоянным автором, российским физиком, доктором физ.-мат. наук, зав. сектором, зам. руководителя отделения Петербургского института ядерной физики РАН, лауреатом премии им. А.Гумбольдта (Германия), Дмитрием Дьяконовым. В этом году учёный отметил своё 60-летие. Беседовала Татьяна Максименко.

Часть 1 интервью. Дм. Дьяконов: «Если вы понимаете квантовую механику, то вы понимаете, как устроен мир вокруг вас»
Дмитрий Игоревич, что для вас физика?

Пожалуй, самое главное – это привычка думать. Это привычка всё время идентифицировать важное и отделять от неважного. Физика – это не математика, хотя мы должны знать математику на очень высоком уровне, как знают математики или, может быть, даже лучше. Но это не математика. Математика – это строгая вещь: вот тебе дано А и В, а ты должен из А и В вывести С. И без всяких пренебрежений, ты это должен сделать точно, это смысл математики. А в физике дано А, В, С, D, E, F, G и нужно из них отобрать, что есть важный фактор, что не важный, оценить важность каждого и посмотреть, как он влияет на действительность. Будь то электронное устройство, или устройство грозы в небе, или протона в атоме. Мы должны понять, как это устроено, и оценить, что важно, что не важно. Естественно, когда у тебя такой тренинг в голове, когда такая привычка всё время оценивать, причём математически оценивать – мы пользуемся строгими методами, – то ты естественно применяешь это ко всему. Ты применяешь это и к истории, и к общественной жизни. К человеческим отношениям даже.

Вы говорите, что физика может понять явления, которые относятся к природе, обществу и даже к отдельным людям. Что физики умеют отделять главное от второстепенного. Вернувшись в Россию, можете ли вы сказать, что происходит в нашем обществе?

Захватывающий вопрос… Можно, я похвастаюсь одним прошлым предсказанием? В 1981 году мы с друзьями, тоже физиками и математиками, интересовались общественными вопросами, анализировали, что происходит в нашем обществе. Я пришёл тогда к неожиданному для себя выводу, что СССР находится в состоянии свободного падения – как человека с крыши дома, когда никакие силы уже не сдерживают. Нужно сказать, что большинство людей вокруг считали иначе – что, дескать, конечно, мы живём в глубокой яме, но что это очень устойчивый минимум. Тысячелетний рейх, так сказать, – я хорошо помню тогдашние разговоры.

Но мы с моими близкими друзьями в 1981 году хорошо представляли, что СССР разобьётся насмерть уже через 10 лет, то есть в 1991 году! Для меня это было абсолютно ясно ещё за 10 лет до того, как это произошло на самом деле. Я даже социальные механизмы предугадал и провёл на карте будущие границы, и почти правильно. Это не слова, есть разнообразные письменные свидетельства.

В частности, мы написали футурологическую пьесу в стихах, где Генеральный секретарь ЦК КПСС получает в 1991 году Нобелевскую премию мира! Это было в 1981 году, мы не знали, кто это будет.

Но ровно через 10 лет, как по нотам, Горбачёв получил Нобелевскую премию, а СССР распался.

Вот это и называется – уметь отобрать из A, B, C, D, E, F, G существенные факторы и просчитать их значение.

Ну, а сейчас куда движется страна? В какую сторону?

Давайте, об этом как-нибудь отдельно поговорим.

Есть сегодня такие проблемы, как 100 лет назад, что мы все должны затаить дыхание, когда физики за них берутся?

Конечно, есть. Материя устроена наподобие матрёшки: мы знаем, что химические вещества состоят из молекул, молекулы состоят из более мелких частей – из атомов. Атомы, как мы уже обсуждали, – из ядра и электронов, которые размазаны вокруг ядра. Ядро состоит из протонов и нейтронов, – это как матрёшка. Мы её открываем-открываем, а внутри всё более мелкие матрёшки. Наконец, протоны и нейтроны состоят из кварков. Кварки вместе с электронами, – это последняя цельная матрёшка, которая находится внутри всех остальных. Кварки – это основные кирпичики, из которых вся материя состоит.

Состоит – это значит, мы можем всё разделить на кварки?

Нет. И это есть одна из самых главных проблем, которая стоит сейчас перед наукой. Действительно, обычно, когда мы говорим «состоит» – это подразумевает, что составляющие мы можем изъять из целого. Скажем, молекулу можно раздробить на отдельные атомы. Атомы можно раздробить на ядро и электроны. Здесь будет электрон, здесь будет ядро. Даже ядро, затратив большую энергию в ядерных реакциях, можно разбить на отдельные составляющие – протоны и нейтроны.

И вот, когда мы доходим до последнего уровня, тут происходит чудо, с которым в науке ещё не встречались. Из тысячи проделанных экспериментов мы знаем абсолютно точно, это не подвергается сомнению, что протоны и нейтроны состоят из кварков. Но они по принципиальным причинам, которые не поняты, не вылетают. Мы говорим, что кварки не вылетают из протонов.

Сейчас на современных ускорителях сталкивают два протона с чудовищной, немыслимой энергией, при столкновении летят брызги в виде разнообразных частиц. Тысячи брызг вылетает, всё что угодно вылетает, но только не кварки, хотя мы знаем, что протоны состоят из кварков. И вот эта проблема – проблема невылетания кварков – одна из самых сложных и непонятных, трудных и важных проблем, которую наука пытается решить сегодня.

Физики – оригиналы: любят давать своим открытиям красивые имена. Почему фундаментальные кирпичики материи названы кварками?

Слово «кварк» ввёл в обиход ещё в 60-е годы замечательный американский физик Гелл-Манн.

Перед самой второй мировой войной ирландский писатель Джеймс Джойс написал странный роман «Поминки по Финнегану». Там каждая фраза - какой-то ребус, и есть даже всемирный клуб любителей книги, которые, как талмуд в своё время, толкуют каждую фразу из этого романа Джойса. Так вот у него среди других странных фраз есть такая: «три кварка для мястера Марка». И вот упомянутый Гелл-Манн позаимствовал отсюда слово кварк. Слово «кварк» на самом деле в немецком языке существует сегодня, и в скандинавских языках существует. Ты заходишь в магазин где-нибудь в Дании, и можешь купить себе кварк. Это просто творог. Кстати, германский «кварк» и славянский «творог», по-видимому, - однокоренные слова.

Гелл-Манн придумал много забавных названий, например, он ввёл понятие «странности» в физику. Причём это не в обывательском смысле странность, а вполне определённая физическая характеристика системы. Странность может быть плюс единица, плюс двойка или минус один или ноль. Наш пентакварк имеет странность плюс единица, в отличие от многих известных частиц, имеющих странность минус единица. Гелл-Манн же придумал сочетание «квантовая хромодинамика». Это современная наука, которая объясняет ядерные силы, микроскопическую природу ядра. «Хромо» говорит что-то о цвете, да? Но к обычному цвету – красному, зелёному – это не имеет ни малейшего отношения. Это просто такое словечко, чтобы нам жилось веселее.

Вообще, ты чувствуешь такое могущество, когда постигаешь никому доселе не известные законы природы, – почему бы не придумать новое слово.

Кстати, Гелл-Манн бросил физику и ушёл в лингвистику. В 2004 году я выступал на коллоквиуме в университете Майями, во Флориде. А передо мной там выступал Гелл-Манн. Но никакие попытки склонить его к разговору по физике успехов не имели. Недавно он приезжал в Москву, но не как физик, а как лингвист. У него всегда была тяга к языкам. Если вы помните, на советских деньгах было написано на языках всех республик СССР «три рубля», «бир сум» и т.д.. Большинство нас, русских, не всё могли прочесть, так вот Гелл-Манн, американец, читал три рубля по-грузински, по-армянски, по-узбекски, по-таджикски… Он всю жизнь интересовался лингвистикой, и когда он, так сказать, стал пожилым человеком, он совсем бросил физику, хотя он сделал очень много – лауреат Нобелевской премии, действительно великий человек – но он полностью ушел в лингвистику.

У вас тоже чувствуется тяга к лингвистике.

Просто я нахватался случайных сведений у своего отца.

Да, ваш отец был лингвистом, историком, известным востоковедом. Как переплеталась за этим столом физика и лингвистика, участвовали ли вы в работе своего отца, или он вам чем-то помогал?

Ну конечно, отец в значительной степени сформировал меня.

Отвечая узко на ваш вопрос, у нас, действительно, один раз было сотрудничество. Одно время отец занимался языками, которые в старину назывались семито-хамитские. Это арабский язык, иврит, эфиопский и многие другие языки. Сейчас принято их называть афро-азиатские языки. Это большая семья языков, такая же, как индоевропейская. И если языки принадлежат одному семейству, это означает, что у них есть генеалогическое древо, то есть был общий предок, но потом языки стали ветвиться. То есть какие-то люди отходили, переставали взаимодействовать с другой группой людей, со временем они стали говорить на схожих языках, но всё-таки различных, как русский и украинский, скажем. Ведь мы же происходим из Киевской Руси, но за несколько сотен лет раздельного существования украинский язык стал немного отличаться от русского языка.

Точно так же разошлись и другие языки. И есть вполне объективные методы, которые позволяют установить, нарисовать это генеалогическое древо, как расходились языки, в какой момент времени арабский язык отошел от древнееврейского, например. И я помогал отцу решать уравнения, потому что это можно было математическим методом определить, и нарисовать генеалогическое древо афро-азиатских языков.

Недавно вышла поразительная книга Н.Н.Никулина о войне, там есть глава с интересным названием «Игорь Дьяконов, или Кто победил немцев в Отечественной войне?»

Я безмерно уважал отца. Он был действительно интересный, яркий человек и учёный, он писал замечательные книжки. Например, я люблю его книгу «Архаические мифы Востока и Запада». Помимо интересных сведений, там ещё чудесная теория, как у невежественного человека мыслительный процесс организован. Ещё рекомендую всем его книгу, которая недавно переиздана, – «Пути истории». Это сравнительно маленькая книжка, так сказать, катехизис, в которой вся история человечества от питекантропа до Брежнева включительно. Вся история там – первая, вторая мировая война, древний Восток, древний Рим, династия Тюдоров – всё что угодно. Каждый человек, если хочет считаться образованным, должен знать мировую историю. И простейший способ – прочитать короткую книгу Игоря Михайловича Дьяконова. Отец обсуждал её со мной, он даже физические термины ввёл в эту книгу вроде фазового перехода. Это термин из физики, а он применил её к истории человеческого общества.

Отец знал бесконечное количество языков. Он знал все европейские языки. Мало того, он читал клинопись, он знал древнееврейский язык, в частности, некоторые куски из Библии он переводил, потому что канонический церковный перевод, как мы все знаем, сделан прозой. На самом деле Библия написана стихами! Он перевёл стихами книгу Екклесиаста, он перевёл Песню песней, он перевёл самую первую книгу человечества с шумерского языка, она написана клинописью. Это Эпос о Гильгамеше, написанный раньше, чем Гомер сочинял свою Илиаду. Так что у него были совершенно безграничные познания.

Я как-то спросил его: а сколько всё-таки языков ты знаешь? Он так посмотрел на меня и сказал, а сколько интегралов ты умеешь брать? И это правильный ответ на дурацкий вопрос, потому что если ты умеешь брать 20 интегралов, то ты, в сущности, умеешь брать все... Ну, более или менее так же с языками. Если ты знаешь 20 языков из разных групп, то это означает, что ты можешь по крайней мере разобрать написанное на очень многих языках.

Как бы вы в двух словах сказали, чем физики отличаются от других?

Для необразованного человека всё вокруг невнятица, один сплошной вопрос. Почему небо голубое? Почему звезды светятся? Почему пиво пенится, а вино, наоборот, не пенится. Как возникла жизнь? Всё непонятно. Отличие образованного человека, профессионала, от нетренированного человека, – он сортирует вопросы: есть как бы лёгкие и трудные вопросы. Вот из того, что я перечислил, почему небо голубое и почему пиво пенится – это вопросы, на которые ответы известны. Они неизвестны людям, которые не получили соответствующего образования, а вообще-то известны. Если ты образован, ты сортируешь вопросы. Вот на этот вопрос мы уже знаем ответ, а на эти вопросы мы ответа не знаем. Дальше внутри тех вопросов, ответы на которые мы не знаем, есть как бы лёгкие и есть трудные.

Есть вопросы более лёгкие, – это те, на которые я сегодня не могу ответить, но я понимаю, что могу найти ответ в какой-то книжке или посмотреть в Интернете. Или просто немного подумать самому, но в принципе того, что мы знаем в целом, – этого уже достаточно. А есть вопросы по-настоящему трудные, которые, грубо говоря, «хоть стой, хоть падай». Что-то настолько необычно, настолько противоречит всему, что мы знаем, что руки опускаются.

Какой вопрос можно отнести к тому, что вы назвали «хоть стой, хоть падай»?

Сейчас есть парочка таких вопросов: почему кварки, эти элементарные кирпичики, никогда не могут вылететь из протонов и нейтронов, в которых они находятся. Мы не понимаем многие вещи в космологии нашей Вселенной, мы не понимаем, из чего сделана тёмная материя. Вы знаете, что звёзды и туманности, которые мы видим на небе, составляют только малую часть массы всей Вселенной, – остальная часть называется невидимой или тёмной материей, и мы не знаем, что это такое. Мы не понимаем, как конкретно возникла самовоспроизводящая жизнь из неорганики. Так что трудные вопросы есть и сейчас.

Дмитрий Игоревич, а как вы решили стать физиком?

Я в 5-ом классе увлёкся радиотехникой. Это было давно, когда были ещё ламповые приёмники, мир только-только переходил на транзисторы. Я паял схемы, сначала я брал эти схемы из книг, из журнала «Радио», потом я стал придумывать, рассчитывать схемы сам, и вот я паял радиоприёмники, магнитофоны, фотоэлементы и другие устройства. А потом в 7-ом классе я прочёл совершенно потрясшую меня книгу Даниила Данина, замечательный был писатель, недавно умерший. Книжка называлась «Неизбежность странного мира». Там в романтичной манере описывалась история физики XX века. И мне это так понравилось, что после 7-го класса я решил, что стану физиком.

Кстати, я немного отплатил Данину: когда я поселился на вилле Карлсберг, я ему написал письмо, что стал физиком благодаря его популярным книгам, и вот, видите, к чему это привело? Данин, видимо, был тронут и написал обо мне статью в «Известиях» – «Наш человек в Копенгагене».

А почему вы стали физиком-теоретиком, раз занимались радиотехникой?

Это, в общем-то, случайно. Когда я учился в университете, я делал, как все, лабораторные опыты, мне это очень нравилось. У меня в столе до сих пор лежат мои студенческие фотографические пластинки с оптическими и рентгеновскими спектрами, мне нравилась работа экспериментатора, но так получилось, что я стал писать формулы.

А что повлияло?

Много что повлияло. В Ленинградском университете (ныне СПбГУ) были очень сильные математики. А я с детства любил математику, так что для меня увлечение теорией было естественно. Но в большой степени это цепочка случайностей. Например, на третьем курсе я решил испытать себя и сдать экзамен из «теорминимума» у теоретиков, а конкретно – Владимиру Наумовичу Грибову, члену-корреспонденту АН, ныне покойному. Надо было решить задачу по классической механике, я её до сих пор помню. Задачу-то я решил, но меня совершенно потрясло, как несколько докторов наук, забравшись в крошечной комнате на провалившийся диван, целый час серьёзно и с воодушевлением обсуждали какую-то задачку с третьекурсником! Это же были для меня Учёные с большой буквы, которые делают небольшие открытия каждую неделю, а крупные – раз в полгода! И я сказал себе: «О, с такими людьми я хотел бы работать». Так и вышло.

Работа актёра, например, – она на виду: все видят, когда актёр талантлив. А вот физик не может показать всему обществу, как он талантлив, и как красиво всё, что он видит. Вы не испытываете некоторой зависти к представителям каких-то более публичных профессий?

Нет, конечно, зависти к актёрам ни малейшей нет. Но в чём-то вы правы: есть небольшая обида, потому что мы такие умные. «Мы» – я имею в виду в широком смысле физики, начиная от Исаака Ньютона, Эйнштейна, Максвелла... Всё, что мы имеем сегодня, – развитие нашей технологии, современная цивилизация – создано учёными и теми, кто на их плечах стоял. Мы очень умные, но, когда мы находимся в компании, с кем-то беседуем, то как донести то, что у нас в голове, тот уровень, на котором мы понимаем мир, как это донести до человека, который не является специалистом? И это бывает обидно. Поэтому я стараюсь со своими друзьями, знакомыми, которые не физики, даже вообще не научные работники, например, актёры – я стараюсь им рассказывать по возможности популярно о том, как устроен мир, что я думаю об обществе и так далее.

Ваши друзья мне рассказали, что вам нравится экстрим, вам нравится ходить в горы, вы гонщик... Новое открытие – это как восхождение в горах?

Горами отчасти заразил мой старший брат, он тоже физик. На самом деле, тут нет никакого противоречия: мне интересно новое, и когда я хожу в горы, меня не столько спортивная часть волнует, сколько совершить первое восхождение, взойти на гору, на которой никто ещё не был, открыть перевал какой-нибудь. И в науке меня интересует ровно то же самое – то, что никто не видел, никто не понимал раньше.

И сейчас это пентакварк, который вы предсказали?

Да, это один из вопросов, который меня сейчас волнует.

А другой?

Другой как бы более глубокий вопрос. Есть наука, которая называется квантовая хромодинамика, которая описывает и объясняет явления, связанные с ядром, с ядерными силами. И есть отдельная наука, которая называется теория гравитации, которая имеет отношение к развитию Вселенной, к Большому Взрыву. И эти две науки, как ни странно, похожи, их математическая структура похожа, но объединить их пока не удалось. И у меня есть разные мысли, не только у меня, но и у многих коллег по всему свету есть мысли, что на самом деле мир един. Математика, которая описывает ядерные силы, и математика, которая описывает Вселенную в целом, – это почти одна и та же математика, и, в сущности, законы одни и те же, они просто проявляются по-разному. И это «великое объединение» всех фундаментальных сил в природе – ещё не решенная проблема, и она меня тоже волнует.
Смешивание кварков и загадочная масса протонов
Нобелевская премия по физике 2008 года. В чем состоят достижения лауреатов19 ноября 2008 г. известный российский физик, доктор физ.-мат. наук, зам. директора Отделения теоретической физики Петербургского института ядерной физики РАН, зав. сектором теоретической физики высоких энергий, лауреат премии им. А.Гумбольдта (Германия) Дмитрий Дьяконов выступил с научным докладом на факультете физики и астрономии Университета в г. Бохуме (Германия) на тему «Лауреаты Нобелевской премии по физике 2008». Мы публикуем статью Дм. Дьяконова, рассказывающую широкому читателю об исследованиях физиков-лауреатов Нобелевки этого года. На фото: Нобелевские лауреаты по физике 2008 г. (с сайта nobelprize.org).

В 2008 году ½ нобелевской премии по физике дали Йоичиро Намбу (Yoichiro Nambu, университет Чикаго, США) и ¼ + ¼ премии – совместно Макото Кобаяши (Makoto Kobayashi, ускорительный центр, Цукуба, Япония) и Тошихиде Маскаве (Toshihide Maskawa, Институт теоретической физики им. Юкавы, Киото, Япония) – за работы по теоретической физике элементарных частиц.

Прежде, чем объяснить, в чём состоят достижения лауреатов, надо сказать несколько слов о физике элементарных частиц. Эта наука изучает, из чего сделана материя на самом глубоком, микроскопическом уровне. Наиболее фундаментальными составляющими материи являются кварки и лептоны, причём и тех, и других по 6 сортов.

Шесть кварков носят названия u, d, c, s, t, b – по первым буквам английских слов «up, down, charm, strange, top, bottom». Протоны, нейтроны, ядра всех атомов, мы с вами – состоим из самых лёгких u и d кварков; остальные рождаются только на короткое время при столкновении частиц на ускорителях при высоких энергиях. Из шести лептонов, которыми являются электрон, мюон, тау-лептон и три типа соответствующих нейтрино, в обычной материи встречаются только электроны, которые входят во все атомы.

Однако те «лишние» кварки и лептоны, которые даже не встречаются в спокойном состоянии в природе, нужны не «для полноты животного царства», а существенно влияют на реальный мир и уж, во всяком случае, необходимы для того, чтобы понять, как реальный мир устроен.

Все шесть сортов кварков имеют ещё одну характеристику, названную «цветом», хотя к обычному цвету это не имеет отношения. «Цвета» – три: «красный, зелёный и синий». Совершенно необычным свойством кварков является то, что кварки никогда не встречаются поодиночке, а только внутри связанных состояний, которые обязательно должны быть «бесцветны». Ничего подобного в истории науки ещё не бывало. Это свойство называется конфайнментом или удержанием кварков (ред. от англ. confinement – удержание, ограничение).

Например, протоны состоят в основном из трёх кварков u, u, d, причём один из трёх «красный», другой «зелёный», третий обязательно «синий», а всё вместе «бесцветно». Кварки внутри протона взаимодействуют друг с другом, «переливаясь» цветами, причём взаимодействие оказывается очень сильным. Наука, которая количественно описывает это, называется квантовая хромодинамика – от слова «цвет», конечно.

У лептонов нет «цветов», они бесцветны изначально, поэтому они взаимодействуют друг с другом и с кварками значительно слабее. Их взаимодействие так и называется – слабое. Слабое взаимодействие проявляется в радиоактивности некоторых ядер и в распадах многих элементарных частиц, а также, например, в охлаждении сверхновых звёзд после взрыва.

Кроме того, на кварки и лептоны действуют и обычные электрические и магнитные силы. В начале 70-х годов выяснилось, что слабые и электромагнитные взаимодействия имеют в сущности одну природу и были объединены общей теорией «электрослабого» взаимодействия. Вместе с квантовой хромодинамикой, описывающей сильные взаимодействия, эта теория была названа «стандартной моделью».

Стандартная модель, созданная усилиями многих физиков в последней трети XX века, – выдающееся достижение человечества. Она наводит порядок в микромире, позволяет количественно описывать сотни, если не тысячи характеристик частиц – как самих по себе, так и при их столкновениях. Стандартная модель настолько совершенна, что трудно найти что-нибудь, чему она противоречит, хотя некоторые неувязки встречаются. Кроме того, пока непонятно, почему Бог создал всё именно так, а не иначе.

Забегая вперёд, скажу, что Йоичиро Намбу получил премию за свои работы по теории сильного взаимодействия, а Макото Кобаяши и Тошихиде Маскава – за их совместную работу по теории слабого взаимодействия. То есть одновременно премированы достижения в совершенно разных областях.

Начнём с Кобаяши и Маскавы, поскольку их работу объяснить проще. Уже в 60-е годы, когда были известны только три из шести сорта кварков (u, d, s), стало ясно, что слабые взаимодействия испытывают не буквально эти кварки, а их «смеси». В данном случае могут смешиваться d и s кварки, имеющие одинаковый заряд, равный одной трети заряда электрона. В мире частиц действуют законы квантовой механики, поэтому можно ввести понятие «частично d-кварк, частично s-кварк», а точнее - их линейную комбинацию. Оказалось, что именно такого типа смесь d и s кварков и участвует в слабых взаимодействиях. Соответствующие уравнения были написаны итальянцем Николой Кабиббо (Nicola Cabibbo), избранным впоследствии иностранным членом РАН.

В 1973 г. Кобаяши и Маскава обобщили теорию смешивания кварков Кабиббо на случай, когда смешиваются не два, а три кварка d, s и b (экспериментально открытый позднее). Они предложили четыре варианта смешивания, и позже оказалось, что один из этих вариантов реализуется в природе. Самое интересное в этой работе (на которую сейчас имеется 5500 ссылок в мировой физической литературе – третье место по числу ссылок из всех статей, опубликованных по физике элементарных частиц!) было то, что смешивание кварков по Кобаяши и Маскаве допускало нарушение симметрии между прямыми процессами и процессами, идущими вспять во времени. Такая симметрия есть почти для всех элементарных процессов, но в редких случаях она слегка нарушается.

Подход Кобаяши и Маскавы позволил поставить на прочную основу изучение таких редких , но принципиально важных процессов для объяснения Вселенной такой, как она есть. Сейчас стало ясно, что три типа нейтрино тоже «смешиваются» между собой на манер Кобаяши – Маскавы, так что значение их работы простирается, по-видимому, дальше, чем они сами предполагали.

Физики называют смешивание кварков в слабых взаимодействиях именами Кабиббо–Кобаяши–Маскавы, но Кабиббо не рассматривал упомянутые редкие процессы, так как их возможность появляется только при смешивании трёх кварков, а не двух. Тем не менее при других обстоятельствах можно было бы подумать о том, чтобы дать нобелевскую премию и Кабиббо, который первым сказал о смешивании, – если б не чувствовалась необходимость дать её Намбу за совсем другую работу. По положению, одну Нобелевскую премию могут разделить на не более, чем трёх человек.

Слабые и электромагнитные взаимодействия являются сравнительно простой и понятной частью физики элементарных частиц, чего нельзя сказать о теории сильных взаимодействий кварков – квантовой хромодинамике. Здесь все привычные представления и интуиция переворачиваются с ног на голову. Обычно если какой-то объект состоит из других более мелких объектов, то его масса меньше, чем масса отдельных составляющих.

Например, масса ядра меньше сумм масс протонов и нейтронов, его составляющих. Разница называется энергией связи: это та энергия, которую надо затратить, чтобы раздраконить объект на составные части. На этой энергии работает Солнце, а, стало быть, всё живое на Земле существует за счёт энергии связи протонов и нейтронов в ядре. Действительно, в недрах Солнца и других звёзд постоянно идёт термоядерная реакция – слипание протонов и нейтронов в ядра, благодаря которой освобождается энергия связи. Она и греет нас – если не непосредственно, так с помощью нефти.

Но когда мы переходим к самим протонам и нейтронам, состоящим из кварков, то там ситуация прямо противоположная: суммарная масса кварков, составляющих протон, примерно в 80 раз меньше массы протона! Откуда же берётся, из чего складывается масса протона, то есть наша с вами масса? (Масса нашего тела на 99.95% задаётся массой протонов и нейтронов внутри нас, а оставшиеся 0.05% – это масса электронов.)

Окончательного, общепризнанного ответа на этот вопрос нет и сейчас, поскольку он связан с другим вопросом, на который тоже пока нет чёткого ответа, – из-за чего происходит конфайнмент кварков, почему они никогда не вылетают из протонов. Однако 47 лет назад, в 1961 г., Намбу вместе с итальянским физиком Джованни Йона-Ласинио (Giovanni Jona-Lasinio) попытались на него ответить с помощью имеющихся тогда подручных средств. Главным подручным средством оказалась аналогия с созданной незадолго до этого теорией сверхпроводимости.

Пользуясь аналогией со сверхпроводимостью, Намбу и Йона-Ласинио предположили, что в мире элементарных частиц происходит нечто похожее, а именно спонтанная конденсация протон-антипротонных, а также нейтрон-антинейтронных пар, в результате чего обе частицы приобретают большую массу! (В сверхпроводниках происходит спонтанная конденсация так называемых куперовских пар электронов – в этом аналогия).

Идея была в то время неожиданной, вполне революционной. Интересно отметить, что в том же 1961 году ту же самую идею и даже то же воплощение опубликовали советские физики Валентин Григорьевич Вакс (род. 1932) и Анатолий Иванович Ларкин (1932–2005) в статье под названием «О применении методов сверхпроводимости к вопросу о массе элементарных частиц». Однако даже в России младшее поколение физиков, я думаю, об этой работе уже не слышало, а за границей о ней и раньше, к сожалению, не знали.

Между тем, на две статьи Намбу и Йона-Ласинио имеется сегодня около 3500 ссылок, и они серьёзно повлияли на развитие теоретической физики элементарных частиц на многие годы вперёд. Парадоксально, но сейчас мы знаем, что почти всё в статьях Намбу–Йона-Ласинио и Вакса и Ларкина 1961 года, если читать их буквально, было неправильно. Сейчас известно, что конденсируются не протоны, а кварки (которые не были ещё известны в 1961 г.), что взаимодействие кварков не такое, как предполагали авторы, и так далее. Однако общая идея была, несомненно, правильной. Она даёт нам возможность понять, откуда берется масса у протонов.

Надо сказать, что Намбу зарекомендовал себя «придумщиком» многих блестящих идей. Это, возможно, выделило его в глазах нобелевского комитета в сравнении с его соавтором Йона-Ласинио. Из многих вещей упомяну, что Намбу является автором математического описания струны, которая, как полагают, натягивается между кварками при попытке их разведения (отсюда – конфайнмент кварков). Теория струн сегодня – бурно развивающаяся область теоретической физики высоких энергий, и этим мы отчасти обязаны Намбу. Премию, впрочем, дали ему не за это, а именно за работы 1961 года.

Как стало уже привычным, Нобелевская премия представляет собой сложное равновесие между научными, конъюнктурными и чисто человеческими соображениями, но все же присуждение премии 2008 г. этим трем физикам является, на мой взгляд, шагом вполне оправданным. Как Й. Намбу, так и М. Кобаяши и Т. Маскава внесли выдающийся вклад в современное понимание мира фундаментальных частиц и их взаимодействий.

См. также:
Большой адронный коллайдер: Изменится ли наше понимание Вселенной?Известный российский физик, доктор физико-математических наук, зам. директора Отделения теоретической физики Петербургского института ядерной физики РАН, зав. сектором теоретической физики высоких энергий, лауреат премии им. А.Гумбольдта (Германия), Дмитрий Дьяконов рассказал «Полит.ру» о том, кто принимал участие в создании Большого адронного коллайдера (БАКа), прокомментировал мрачные прогнозы, заполнившие мировые СМИ и поделился своими ожиданиями о том, какие тайны материи откроются в результате пуска нового ускорителя.

10 сентября 2008 г. в Европейском Центре ядерных исследований под Женевой, известном по французской аббревиатуре ЦЕРН, был запущен самый большой в мире ускоритель заряженных частиц (Large Hadron Collider, LHC), где протоны разгоняются практически до скорости света и их кинетическая энергия в 7500 раз больше энергии покоя.

Протоны ускоряются и летят внутри двух круговых замкнутых труб, проложенных под землёй в туннеле длиной 27 км: в одной трубе протоны летят по часовой, а в другой – против часовой стрелки. Туннель проходит как раз под границей Швейцарии и Франции, так что протоны нарушают границу туда и обратно 20000 раз в секунду. Чтобы воздух не мешал полёту протонов, он откачен из труб, причём до степени, превосходящей разреженность воздуха на безвоздушной Луне!

В четырёх местах пучки из двух труб пересекаются, и в этих местах происходит столкновение протонов с энергией, в 7 раз выше предыдущего рекорда, достигнутого на ускорителе Тэватрон в США. При столкновении протонов во все стороны летят «брызги» – элементарные частицы, их в среднем рождается порядка 100 на каждое столкновение. В проекте предусмотрено, что в будущем по тем же трубам будут ускорять не протоны, а ядра свинца: в этом случае при каждом столкновении ядер будет рождаться порядка 15000 новых частиц.

Само название ускорителя: «коллайдер» происходит от слова collide, т.е. сталкивать и обозначает ускоритель заряженных частиц, где имеется два пучка частиц, летящих навстречу друг другу. Слово «адрон» (от греческого «сильный») было придумано и введено в мировой обиход академиком Львом Борисовичем Окунем; оно обозначает сильновзаимодействующие элементарные частицы – протон, нейтрон и многие другие нестабильные частицы, а в широком смысле также и ядра. Так что получился как раз «адронный коллайдер»: два пучка протонов или ядер, ускоряемых навстречу друг другу.

Каждую частицу, рождённую при столкновении протонов или ядер, надо зарегистрировать: установить точное время появления «новорожденной», её массу, заряд, скорость и направление вылета. Причём делать это надо оперативно: ожидаются сотни миллионов столкновений в секунду! Для этого каждое из четырёх мест столкновения окружают детекторами – огромными устройствами размером с большой многоэтажный дом, начинёнными сложнейшей современной электроникой. Основных детектора четыре, они получили название ATLAS, CMS, ALICE и LHCb.

Большим международным коллективам, работающим на этих детекторах, предстоит разобраться в огромном потоке информации о частицах, рождающихся при столкновениях протонов, и извлечь из него крупицы истины – сведения об устройстве материи на новом, ещё более микроскопическом уровне, чем сами протоны и электроны. По существу LHC – это микроскоп, с помощью которого физики разглядывают, из чего и как сделана материя.

И сам ускоритель, и детекторы – чудо инженерной мысли, передовой край современной техники, стоит всё это около 8 миллиардов евро. Отдельные страны не могут позволить себе таких расходов, поэтому в бюджет Большого адронного коллайдера свои вклады внесли все европейские страны-участницы ЦЕРН. Большие средства вложили США и Япония.

Россия не является членом ЦЕРНа, но традиционно сотрудничает с ним. Решение о строительстве и финансировании LHC принималось в начале 1990-х годов, когда мы были нищими. Тем не менее – и это огромная заслуга тогдашнего министра науки и технической политики Бориса Салтыкова – России удалось войти в исследовательские группы по всем четырем детекторам, причём на льготных для нас условиях: при непропорционально низком финансовом вкладе, российские физики составляют чуть ли не четверть большой международной команды, которая будет «снимать сливки» с работы ускорителя. Но на российских физиков приходится также и большая нагрузка при монтаже и отладке сложного оборудования, да и многие части четырёх детекторов изготовлялись в России.

В чём же состоят эти «сливки», что мы надеемся выяснить нового о природе и мире? В том-то и прелесть, что мы не знаем, – можно только гадать. С пуском LHC происходит прорыв на новый, более глубокий, неизвестный до сих пор уровень организации материи.

Хочу напомнить, что ровно 100 лет назад Резерфорд построил «большой адронный коллайдер» того времени: он ускорял альфа-частицы (то есть ядра гелия), которые попадали на тонкую золотую фольгу, а Резерфорд подсчитывал, сколько альфа-частиц пролетит насквозь, а сколько отскочит назад. Из этого опыта он пришёл к выводу, что атомы золота состоят из тяжёлого и компактного ядра, вокруг которого витают лёгкие электроны, то есть он пришёл к той самой «планетарной» картинке атома, которая сегодня изображена на каждом учреждении, связанном с атомом. Можно было предугадать это? Нет, напротив: до опыта Резерфорда господствовала модель атома Томпсона, оказавшаяся полностью неверной.

Открыть-то правильную планетарную модель атома Резерфорд открыл, но в ней был заложен парадокс: отрицательно заряженные электроны должны были бы очень быстро падать на положительно заряженные ядра, а между тем атомы, из которых мы состоим, вполне стабильны. Раздумывая над этим парадоксом, Нильс Бор пришёл к тому, что в микромире правят не классические законы физики, а другие, которые теперь называют квантовой физикой. На основе именно этих квантовых законов сделаны сегодня все компьютеры, мобильники и так далее. Без Бора и Резерфорда, без «большого коллайдера» начала XX века ничего этого не было бы. Поэтому знание бесценно.

Куда, к каким практическим устройствам приведёт нас понимание, как устроена материя на более глубоком уровне, чем ядра и протоны, – мы не знаем и знать не можем. Это, как и поэзия, – «езда в незнаемое». Задача физики – понять, как устроен мир. Невозможно сделать практическое устройство, если ты не понимаешь, как оно «работает». А что последует из результатов, полученных на LHC, – какая-нибудь новая «кварктроника» или новый способ путешествия к далёким звёздам, мы узнаем лет через 50.

Но, на самом деле, практическая польза от LHC есть уже сейчас, ещё до вывода его на полную мощность. Я уже говорил, что и сам ускоритель, и детекторы – это вершина технической мысли. А разрабатывали всё это физики, инженеры; заказы передавались в промышленность разных стран, в том числе в России. Значит, LHC подымает технологию, причём в самых разных областях – от сверхпроводящих материалов до сверхбыстрой электроники.

Кстати, об электронике. Может быть, не все знают, что Интернет и Всемирная паутина родились именно в ЦЕРНе. Поскольку исследования, в которых участвуют большие международные коллективы, ведутся там давно, в 80-е годы стала насущной задача быстрой передачи больших массивов данных среди многих пользователей, разбросанных по всем континентам. Так в ЦЕРНе был впервые создан прототип Всемирной паутины и разработано соответствующее программное обеспечение. Количество информации в секунду, которое будет теперь производиться на LHC, опять беспрецедентно, и опять её надо передавать во все страны, где работают участники экспериментов. Поэтому создаётся новая система для быстрого распространения огромных массивов данных – GRID. Возможно, и на этот раз разработка ЦЕРНа станет прототипом того, чем через несколько лет будут пользоваться обыватели на всех континентах.

Ещё я хотел сказать о мрачных прогнозах конца света – единственно, чем, к сожалению, заполнены СМИ всех стран в связи с пуском LHC. Вообще-то тут есть, над чем подумать. Можно теоретически предположить, что наш мир находится в метастабильном состоянии, и столкновение частиц с беспрецедентно высокой плотностью энергии, пусть в маленьком объёме, может спровоцировать переход нашего мира в настоящее стабильное состояние. Такое будет, натурально, сопровождаться выделением большого количества энергии, причём ударная волна будет двигаться из Женевы со скоростью света! Не со скоростью звука, как в «Колыбели для кошки» Курта Воннегута, а света!

Во-первых, я хочу заявить, что это была бы самая прекрасная смерть, о которой можно только мечтать. Вы ничего не узнаете о грядущей смерти, не почувствуете боли (потому что мозг испарится в то же мгновение, что и рецепторы боли), не узнаете о гибели близких, не подумаете плохих мыслей. «Прихватит» и инопланетян, и другие галактики. Живого не станет, а Вселенная перейдёт в другое состояние…

Во-вторых, хорошо или плохо, но этого не будет. Дело в том, что Землю и другие небесные тела постоянно бомбардируют космические лучи, в том числе с энергиями, на несколько порядков превышающими энергию протонов в LHC. И ничего, Вселенная живёт себе уже 14 миллиардов лет, а жизнь на Земле существует 3-4 миллиарда лет. Так что можно смело делать предсказание, что человечество переживёт пуск LHC на проектную мощность. Тем более, что уже никто не упрекнёт вас, если вы ошибётесь.

См. также: